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Using 2 more time variables as the quantum hidden variables, we derive the equation of Dirac
field under the principle of classical physics, then we extend our method into the quantum fields
with arbitrary spin number. The spin of particle is shown naturally as the topological property of
3-dimensional time + 3-dimensional space . One will find that the quantum physics of single particle
can be interpreted as the behavior of the single particle in 3+3 time-space .

Among all of the questions in quantum hidden variable
theory, the crucial one is : quantum physics is an elemen-
tary theory of physics, so the quantum hidden variables
should be very basic concepts of physics, then what are
these variables ? The other important questions about
quantum concepts are: i) Spin is the basic property of
particles and it is derived from quantum physics, so is
there a classical analogue of spin ? ii) The satisfactory
hidden variable theory should be a single particle theory,
is that possible for a single particle theory to recover the
statistic properties of quantum physics ? iii) Suppose we
can get a single particle theory under the principle of clas-
sical physics, how can we interpret the non-local result
of Bell’s inequality ? iv) Why do we have uncertainty
relation? Finally, could the new interpretation give us
more knowledge than quantum physics does? There are
many tries to answer some of above questions as we can
see in the work of Bohm [1] and Holland [2] .

In this paper we will introduce a very interesting
observation in quantum hidden variable interpretation
method: if we add two more time variables tθ, tφ as the
quantum hidden variables, i.e., 3-dimensional time (t, tθ,
tφ) instead of 1 dimension, we’ll find that the motion of
single particle under 3+3 time-space posseses the same
qualitative behavior as the particle in quantum physics
and the spin of particle can be simply interpreted as the
topological property of 3-dimensional time. And then we
will get the Dirac equation and Bargmann-Wigner equa-
tion.

Let us consider the two-slit interference experiment of
electrons . We know that in order to get the interference
pattern, both slits should have contributions to the result
even if we control the electron to be emitted one by one.
That means if one tries to trace the trajectory of a single
electron, the only conclusion he can get is that the single
electron goes through the two splits at the “same time”,
or in other word: “a particle can show at different places
at the same time”. Let us express this word in more
detail : “a particle can show at two different places at
the same time but this particle is still a single particle”.
It sounds weird, but there is one case that these things
can really happen, that is: if and only if there are some
hidden time variables which we didn’t find. That is to
say, the electron passes through the two splits at the same

“measure time” but at different “hidden time” .
Consider the case that the time in microcosm is more

than 1 dimension — for example 2-dimension, and we
use clock to measure time. Since the clock can only mea-
sure the 1-dimensional time, i.e., the “length” of time,
the information about the “direction” of time (except
the forward and backward direction in the same line )
is unknown. Let us draw a circle and build the polar
coordinate (t,θ) on it, where t is modulus of time and
θ is angle . For the two points t1(t,θ1), t2(t,θ2) on the
circle with r = t, if we start our measurement from the
center t0, because we can only measure the “length” of
time, we will treat t1,t2 as the same point . Suppose
there is a particle A. At time t1, the space coordinate of
A is (x1,0,0) and at time t2 the space coordinate of A is
(x2,0,0), then using the knowledge of 1-dimensional time,
we will conclude that a particle A can show at different
positions x1, x2 at the same time t.

This situation is similar to the situation of two-slit in-
terference of electrons except that the latter has the be-
havior of a plane wave. Now let us make further explo-
rations: what’s the physical meanning of “finding A at
position x0” in classic physics? That means at time t,
our apparatus is at position x0, and at the same time, A
is also at position x0, i.e., our apparatus meets the parti-
cle at position x0 at time t. If the particle only shows at
x0 at time t1 6= t, and at the mean time, our apparatus
only shows at x0 at time t, we will miss that particle .

Extend this logic to the case of 2-dimensional time.
Then the meaning of finding a particle at position x0 in
2-dimensional time is : at time (t,θ1) our apparatus is
at position x0, and at the same time (t,θ1) the particle
also is at position x0, i.e., We meet the particle at x0 at
time (t,θ1). If the particle only shows at x0 at time (t,θ2)
where θ2 6= θ1, and our apparatus only shows at x0 at
time (t,θ1), then we miss that particle . That is why even
though a particle can show at different places at the same
time, we can still only find one particle instead of 2 or
more (Strictly speaking, here we need the Wave-Package
Collapse postulate which will be discussed later). Due
to the lack of information of the direction(the angle θ) of
time, we can only find the particle by chance even though
we have already known that the particle will be at posi-
tion x0 at time t . The possibility of finding the particle
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at position x0 at time t depends on how many different
(t,θ) will show on position x0 . If we let the total portion
of that angle θi( which passes through x0 at time t ) be
divided by 2π, and let the result correspond to the square
of amplitude of the wave function of the particle, then we
will find that the measurement in the multi-dimensional
time of a single particle has the same statistic property
as the measurement in quantum physics. Furthermore,
if a particle at different θi with the same radius t has
different energies, then at time t, if we measure energy
of the particle, we cannot be sure about which result we
will get. The possibility to find the energy which equals a
particular E will depend on the portion of total θi which
corresponds to the same energy E divided by 2π.

We can go one step further. Obviously the above pic-
ture of 2-dimensional time has the non-local property: it
does not satisfy the causality of 1-dimensional time —
we can not link t1 and t2 which are on the same circle by
the causal relation. The only thing we can expect about
causality is the distribution of total time vice space, that
is similar to the case in quantum physics, where we can
only have the causality for whole wave function. All these
arguments can be easily extended to 3- or more- dimen-
sion case. Moreover, since we have more degrees of free-
dom in time, then is that possible to have a rotation in
time coordinate which is just the same as spin ?

Although the above picture is rather rough, it still
shows the potential what the 2 or 3 dimensional time
can realize. First let us guess the dimension of time is
3, just for symmetry reason, later we will find the strong
support for this guess. The rest questions are what is
the behavior for a free particle which moves in the 3+3
space-time and what is the mechanism in that case? Our
job is to find how does the 3-dimensional time maps into
3 dimensional space for a free particle. Is that just the
plane wave function? Is it possible that the relations be-
tween time and energy and between the position and mo-
mentum satisfy the uncertainty relation? Is that possible
that the mechanism of the motion of the free electron in
3+3 space-time satisfies the Dirac equation?

Imagine a ghost in microcosm who can watch the single
particle without interrupting it and suppose he uses the
clock to measure time. He will find when the clock points
to time t, this particle shows at lots of different places
with different “time angles” tθ, tφ. Furthermore, he can
watch the evolution of the particle in each position when
t changes, i.e., he traces the changes of each position(at
different tθ, tφ) when t changes, then there will be lots of
paths distributed in space, each path may have different
weights, and on each path,the causality is satisfied. This
picture is the same as the idea of Feynman path integral.
That is, we can let each time path from the center of
time sphere to the surface correspond to each Feynman
path, and let the surface of time sphere correspond to the
surface of wave function. In other aspect, in the whole
space the positions of the single particle form a field in

which each “force line” passes through each different tθ,
tφ at the specific time, so our question is: how to build
a field on a spherical surface S2 in 3-dimensional time
coordinate?

This situation is the same as the situation of Dirac
monopole: the “force line” of our field is just the Hopf
bundle on S2. It is well known in monoploe theory [3]
that, according to the nontrivial global topological prop-
erty of S2, the transition function for monopole bundle
on spherical surface is exp(−2igφ) (here h̄ = 1), and it is
not single-valued unless it satisfies the quantization con-
dition:

e−4πig = 1. (1)

Hence winding number g = 0, ±1/2, ±1,· · ·. We will find
that, in our case, g is just the spin of the single particle.

Consider a “time” sphere whose radius is 1/2 and sper-
ical coordinate on the surface is (1/2, tθ, tφ), resting on
a u = x3 + is plane at the south pole. Here x3 is the 3rd
coordinate of space, and s is the combination of space
coordinate x and y(each point on s axis corresponds to
a circle in x1-x2 plane). Let the axis x0 which corre-
sponds to one specific time direction pass through the
south pole o and be perpendicular to x3-s plane, then
the whole coordinate system is shown in Fig1. Let Z=(
z1

z2

)
be the stereographic projection coordinates of a

point in the northern hemisphere Un of S2, where z1 =x0,
z2 = z + is. on the unit sphere, then we have:

x2
0 − x2

1 − x2
2 − x2

3 = x2
0 − s2 − z2 = |z1|2 − |z2|2 = 1.

(2)

Compare it with the condition in Hopf bundle [3] x2
1 +

x2
2 + x2

3 + x2
4 = 1, the only difference is that the sign of

xi(i=1,2,3) becomes negative. This negative sign comes
from the time metric just the same as the time in rela-
tivity. Then from (2) and Fig1., we find x0 = 1/2(1 +
cosh tθ), x3 = 1/2 sinh tθ cos tφ, s = 1/2 sinh tθ sin tφ, Z
can also be written as:

Z = cosh
tθ
2

(
cosh tθ

2
sinh tθ

2
eitφ

)
. (3)

Since Z is the stereographic projection coordinate, we can
omit the common coefficient cosh tθ

2 , then:

Z =

(
cosh tθ

2
sinh tθ

2 e
itφ

)
. (4)

Rewrite our representation, let z1=

(
x0

0

)
, z2=

(
z
s

)
,

then the expression of Z can be written as 4-component
form:

Z =




cosh tθ
2

0
sinh tθ

2 costφ
sinh tθ

2 sintφ


 . (5)
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If we add the U(1) bundle to the surface, then Z becomes:

Z → Z =




cosh tθ
2

0
sinh tθ

2 costφ
sinh tθ

2 sintφ


 eiχ. (6)

On the north hemisphere, we can let

cosh tθ =
1√

1− v2

c2

(7)

sinh tθ =
v
c√

1− v2

c2

(8)

costφ = v3 (9)

sintφ = vs (10)

where v =
√
v2

3 + v2
s . Then, we make a substitution:

vs → v1 + iv2 (11)

where v1,v2,v3 are components of velocity of free particle
in space coordinate, then the Eq. 6 becomes

Z = cosh
tθ
2




1
0

sinh
tθ
2 costφ

cosh
tθ
2

sinh
tθ
2 sintφ

cosh
tθ
2



eiχ (12)

=

√√√√m + m√
1−v2

c2

2m




1
0
mv3

m+ m√
1− v2

c2
mv1+imv2

m+ m√
1− v2

c2



eiχ. (13)

If we let m be the static mass of particle, then mvi =
pi(i=1,2,3) and m√

1−v2

c2

= E. Let χ = pµxµ (µ =

0,1,2,3), we can find that Z is just one of the solu-
tion to “positive-energy” of Dirac field in σz represen-
tation(Here σ is Pauli matrix.) It is easy to see that, let
vs = v1 − iv2 and interchange the 2nd row and 1st row,
and then 4th row and 3rd row, we’ll obtain the other so-
lution with “positive-energy”. On the south hemisphere,
x0 = 1−cosh tθ

2 = sinh2 tθ
2 , and let χ→ χ− tφ, then Eq. 3

becomes:

Z = sinh
tθ
2

(
sinh tθ

2 e
−itφ

cosh tθ
2

)
. (14)

Written as 4-components representation and let vs =
−v1−iv2, Z will become the solution of “negative-energy”
of Dirac field in σz representation. Similarly, if we let
vs = −v1 + iv2 and interchange the 2nd row and 1st row,

4th row and 3rd row, then we will get the other solu-
tion of “negative-energy”. So we find that Z in the whole
sphere corresponds to 4 solutions of free Dirac field in σz
representation . Now we put Eq. 6 into Dirac equation

(iγν∂ν −m)ψ = 0 (15)

and multiply the both sides of the equation by Z+γ0,
then we get

iZ+γ0γν∂νZ = m. (16)

Let us make a substitution

∂x1 + ∂x2 → ∂s (17)

and suppose that in free particle case, tθ, tφ don’t depend
on xi(i=0,1,2,3), then after simple calculation, we have

cosh tθ∂x0χ+ sinh tθ cosφ∂x3χ+ sinh tθ sinφ∂sχ = −im.
(18)

However, as we can see from Fig1., the coordinates of
unite vector n̂(n1, n2, n3) have the relation that:

n1 = n̂ · x̂3 = sinh tθ cos φ (19)

n2 = n̂ · ŝ = sinh tθ sinφ (20)

n3 = n̂ · x̂3 = cosh tθ (21)

where “·” means the scalar product of two vector. Then
the Eq. 18 can be written as :

− n̂ · ∇χ = im (22)

or

~Q = −∇χ = imn̂ (23)

where ∇ = x̂0∂x0 + x̂3∂x3 + ŝ∂s. Compare the above

two equations with the case in static electric field ~E =
−∇φ = q

r2 r̂, we find that ~Q has the form of classical field
and the free Dirac field corresponds to classical static field
in 3-dimensional time-space, so we call ~Q “time field”.

Here, we use the Dirac field in σz representation which
corresponds to a particular coordinate system x3 − s in
Fig1. The s axis can be treated as the combination of
x1, x2, and we make such substitution as Eq. 11 and
Eq. 17 since each point on s axis corresponds to a circle in
x1-x2 plane. In general, the mapping from 3-dimensional
space to time spherical surface is completed by 2 steps.
First, from the spacial S3 ∼= SU (2) → spacial S2, and
then from the spacial S2 to time spherical surface S2.
Instead of Eq. 13, in north hemisphere, Z can be written
as:

Z =

√√√√m+ m√
1− v2

c2

2m




1
0

m~v·~σ
m+ m√

1− v2

c2

(
1
0

)


 eiχ. (24)
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This is the “positive energy” solution of Dirac equation
of free electron in any representation. The same method
can be used in the other 3 cases.

Refer to monopole theory. Here Z corresponds to Hopf
bundle with winding number g = 1/2 in monople the-
ory. It’s easy to see that if we choose the representa-
tion Z as the direct product representation of Z1, Z2,i.e.,
Z = Z1Z2, where Zi(i=1,2) are 4-components vectors as
eq.(5), then the new Z corresponds to Hopf bundle with

winding number g=1. Generally, Z =
n∏
i
Zi (i=1..n) cor-

responds to Hopf bundle with g=n/2 . Since each Zi sat-
isfies eq.(16), the whole Z is just the spinor which satisfies
Bargmann-Wigner equation, and the winding number g
just correspond to spin in quantum field theory!

From all the above, we can see that spin can be natu-
rally obtained from the topological property of the parti-
cle in 3+3 dimensional time-space, but if time dimen-
sion is less than or more than 3, we cannot get the
same topological result. That is why we think time is 3-
dimensional. Also, we obtain 3 interesting observations:

i) The E > 0 solution corresponds to the Hopf bundle
in north hemisphere, and E < 0 solution corresponds to
the Hopf bundle in south hemisphere. That means the
time direction of electron with negative energy is opposite
to the time direction of electron with positive energy, so
one can guess that the negative energy corresponds to
the electron’s past. The reason that the “negative sea”
is fully occupied is because the history of electron is fully
occupied. So in our case, the Dirac equation is a single
particle equation.

ii) If m = 0, we should modify our method to get the
field equation. We need move our original point o and
the whole x3−s plane of Fig1. along x0 axis 1/2 upward,
i.e., move the original point of our coordinate to the cen-
ter of time sphere, then the whole system has spherical
symmetry. This symmetry corresponds to gauge invari-
ant. When m 6= 0, we lose spherical symmetry, i.e., we
should choose one particular direction as our x0 axis, and
one particular direction as our n̂ direction. This case cor-
responds to non-gauge invariant case. So this mechanism
is just the same as the symmetry spontaneous symmetry
violation in Higgs mechanism.

iii) In 3+3 dimensional time-space, the most surprised
thing is that, even if two particles stay at the same posi-
tion (x,y,z) and at the same time t, it is possible that
they cannot “see” each other, in another word, they
have no interaction with each other — if the coordi-
nates of particle 1 is (t, tθ1 , tφ1, x, y, z), but of particle 2
is (t, tθ2 , tφ2 , x, y, z). This can interpret why we have the
Bose-Einstein Condensate and Superconductivity: when
the distributions of time angles of all the particles are fit
very well such that, within each small space area, and
at time t, no two particles have same time angle tθ, tφ,
then no two particles can “see” each other. These kinds
of system will not contain any interaction.

Furthermore, we have found that the solutions of quan-
tum field equation of free particle correspond to Hopf
bundles in monopole theory, and each Hopf fiber cor-
responds to each plane wave with different momentum
~p. Consider two extreme cases. When the space posi-
tion of particle is confined at x at time t — the particle
stays at x in all the time angles (t, tθ, tφ), and each an-
gle in time surface corresponds to one Hope fiber and
each Hope fiber corresponds to each different ~p, so the
different fiber corresponds to each path of particle with
different speed. Then after time t, The particle at same
t but with different time angles reaches the different po-
sitions. This picture conforms to wave-package diffusion
in quantum theory; when the particle is in fixed momen-
tum ~p, each space point x can only contain one Hopf
bundle(i.e., one time angle), and all different time angles
will be distributed to the whole space, but with the same
Hopf bundle, we can find that particle everywhere. This
picture describes the uncertainty relation in 3+3 dimen-
sional time-space.

In addition, we should also add “Wave-Package-
Collapse” conjecture to our theory. In our case, that
is: if we try to measure some physical attributes of the
particle, but by chance, the apparatus only meets a por-
tion of time angle of the particle(suppose the interaction
between the apparatus and the particle will change the
distribution of time angles of that particle in the whole
space.), then after the measurement, the distribution of
time angles of the particle will depend on the portion of
time angles which we measured. The case is the same as
a needle sticks into an inflated balloon, the whole surface
of balloon will be destroyed.

The detail of the dynamical properties and the metric
of 3+3 time-space will be discussed in future.
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