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Abstract 
Segal’s theory is outlined briefly. It is based on 
space-time D. There are space-times L and F, 
which are on equal footing with D. The main idea 
of the DLF-approach is that each object of nature 
has not just D-properties (that is, “conventional” 
ones) but L- and F-properties, too. The F-part of 
the theory is studied in more detail. 
 
1. Introduction and the world D 

     The importance of the Biological Field which is 
“a combination of different types of fields…of 
known and unknown origin…” has been stressed in 
[K-02] (p.237 and elsewhere). To try to understand 
those “unknown origins” we build a certain 
theoretical model, first. Otherwise, as someone 
said, “We do not have any idea how to detect those 
new fields, do not know what to measure.” The 
current article is dedicated to the DLF-approach 
which is based on Segal’s chronometric theory (see 
more details in [Le-03] and/or in [KL-05]). Having 
in mind the topic of the Conference, it is worth 
mentioning that significant part of paragraph I.3 of 
[KL-05] is dedicated to rigorous mathematical 
notion of energy. The DLF-theory forces to 
consider three types of energy instead of just one. 
   The chronometric theory (see surveys [Le-93], 
[Le-95]) has been presented in dozens of articles 
many of which have been published in leading 
mathematical, physics, and astronomy journals.  
   Here are some building blocks of the DLF-
approach. Denote by M the Minkowski space-time 
(in its Hermitian realization, see Section 3 below, 
where the Caley map formula is given). Let D stand 
for the unitary group U(2). The image c(M) of the 
Caley map с (refer to [Se-76] or to [Le-95]) is a 
dense open subset in D.  
     Let us view M as a vector group. It is 
commutative: each left translation is the respective 
right translation, too.  The family {Cy} of subsets in 
M forms a bi-invariant cone field; each Cy = y + C, 
where C is a light cone at the origin of M. Due to 
the presence of the Caley map, there is the 
corresponding cone field on D, too. On the 
universal cover D˜ of D one can introduce future 
sets in a canonical way. These sets are determined 
by the above cone field and by the choice of 
orientation in time; they form the causal structure 
on D˜ (whereas D is acausal since it is compact). 

     Let G denote the conformal group SU(2,2). 
Recall the well-known linear-fractional G-action on 
D: 
             g(z) = (Az + B)(Cz + D)-1                      (1.1)  

 
where an element g is determined by 2×2 blocks A, 
B, C, D. This action is canonically lifted to the G˜-
action on D˜ (the latter action preserves the causal 
structure). Proofs of the above statements can be  
found in [Se-76, PaSe-82a]. 
     Theorem 1 ([Al-76, Se-76]). If a bijection f of 
D˜ preserves its causal structure then f is an 
element of the transformation group G˜, determined 
by the action (1.1).  
 
   In other words, the geometry of such a space-
time is determined by its causal structure – a 
fundamentally important property! 
    Vector fields 
                                X0 = L-10,  X1 = L14 – L23,  X2 = 
L24 – L31,  X3 = L34 – L12  
 
form a left-invariant orthonormal basis on D = 
U(2), where fifteen vector fields Lij (index i is less 
than j, and they take on values -1, 0, 1, 2, 3, 4) are 
determined on D by the action (1.1). Let us keep 
the same symbols to denote respective vector fields 
on D~. Globally, D~ is R1 × S3, where S3 is 
represented by the group SU(2). A cosmological 
model based on D~ has been considered by many 
experts “to be an excellent model for the large-scale 
gravitational structure of the universe. It fell into 
disfavor only because of the belief, explicitly stated 
by Hubble, that there would be no redshift in it” 
([Se-85, p.214]). Segal’s chronometric theory 
explains redshift by the excess of D-energy over M-
energy. That is why “there is no reason not to use 
the Einstein Universe D˜ as a gravitational model, 
as originally proposed”. Also, see [DS-01]. 
   In Chronometry, there is a conformal invariant R, 
interpreted as the radius of a three-dimensional 
(spherical) space. Irving Segal has put it for the 
(long wanted by Dirac and others) third 
fundamental constant – additionally to the speed of 
light and to the Planck’s constant. If (for 
mathematical convenience) one takes R=1, then the 
scalar curvature is 6.  
   The conformally covariant wave operator is 
 

X0
2 – X1

2 – X2
2 – X3

2 + 1, 
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as it is shown in [PaSe-82a]. 
     Remark 1. In the General Relativity Theory 
(GRT), D~ is also known under the name of 
Einstein static universe (see [Kr-80, p.122]). The 
respective solution (of GRT Einstein equations) is 
interpreted as an ideal fluid. If not to assume R=1, 
then the scalar curvature is 6/(R2). Energy density 
and pressure both equal 1/(R2). Energy conditions 
hold. See [Le-07] for proofs.  
 
2. The worlds L and F 
     Topologically, L~ is R4. Its relatively compact 
form L (being a four-dimensional orbit in D) is 
determined by a basis of vector fields l1, l2, l3, l4  on 
U(2) where 
 

l1 = -(L-10 + L04 + L-11 + L14), 
 

l2 = (1/2)(L-12 + L24 + 2L30 + 2L31), 
 

l3 = (1/2)(L-13 + L34 + 2L02 + 2L12), 
 

l4 = (1/8)(-5L-10 - 3L-11 + 3L04 + 5L14 + 4L23). 
 
One can prove that they generate the oscillator Lie 
algebra. The expression for the invariant form 
(which determines the bi-invariant metric) follows 
from the formula for the respective wave operator 
(see below). 
     The scalar curvature is now 0 (as shown in [Le-
86b] where this world L~ has been studied 
separately; altogether the three worlds have been 
studied in [Le-86a]). 
     Here is the expression for the conformally 
covariant wave operator: 
 

2l1l4 – (l2)2 - (l3)2. 
 
     In terms of GRT, we now have an isotropic 
electromagnetic field determined by a covariantly 
constant light-like vector (see [Le-86b, p.123]).  
Energy conditions hold. This space-time is a special 
case of plane waves. The latter have been discussed 
in dozens of publications. Of special interest in our 
context is an article [Pe-76] by R. Penrose, where 
he introduced a method for taking a continuous 
limit of any space-time to a plane wave.  
      In [NaWi-93] a conformal field theory model is 
based on L. The model is an un-gauged Wess-
Zumino-Witten model. In [CaJa-92], [CaJa-93] the 
oscillator Lie algebra l is used to formulate string-
inspired lineal gravity as a gauge theory. However, 
the last two publications are seriously flawed. 
Namely, the upper left corner h (see expression 
(36) from [CaJa-92] and formula (3.41) from 
[CaJa-93]) has to be an identity matrix, rather than 
a diagonal matrix with 1, -1, entries. No surprise 
that the authors could not believe in one of their 
own conclusions (see their p. 249 of [CaJa-93]). In 

[NaWi-93] (which refers to [CaJa-92], [CaJa-93]) 
the invariant form in question is introduced 
correctly: expression (6) on p.3751.  
     
     The group L has been called an oscillator one. 
The L’s important property to admit a non-
degenerate bi-invariant metric has only been 
noticed in early 80s: [GuLe-84], [Le-85], [MeRe-
85]. 
     From the above discussion it is clear that the 
building blocks D, L are quite well understood, and 
their importance (as specific worlds of the GRT and 
otherwise) is accepted by the physics/mathematics 
community. As part of the DLF-approach, let us 
now consider the tachionic component F. 
    F~ is R4, topologically. It is the universal cover of 
the Lie group U(1,1). Its relatively compact form F 
(being a four-dimensional orbit in D) is determined 
by an orthonormal basis of vector fields H0, H1, H2, 
H3 on U(2). Here H0 = L-10 – L12, H1 = – L-12 – L01, 
H2 = L02 – L-11, H3 = L34. These fields generate a 
u(1,1), a sub-algebra of su(2,2). The scalar 
curvature is negative 6, and 
 

(H0)2 - (H1)2 - (H2)2 - (H3)2 – 1 
 

is another conformally covariant wave operator. 
     Remark 2. Treated as the solution of Einstein 
equations, it is interpreted as a tachionic fluid, [Kr-
80, p.57]. In the expression for the corresponding 
bi-invariant metric, there is a parameter a related to 
a choice of an invariant form on the simple su(1,1)-
sub-algebra of  u(1,1). The scalar curvature is now -
6/a2. Energy density and pressure are both negative;  
-1/(a2). These statements have been proven in [Le-
07]. The parameter a is a conformal invariant. 
Energy density and pressure both negative imply 
energy conditions violation, which is why the world 
F plays a special role.  
    Here is what M. Davidson (an expert on 
tachyons) writes ([Da-01, p.1]): “Tachyons 
captured some interest in the physics community in 
the 1960s and 70s [1-7] (references from [Da-01] 
are not included into this short article; A.L.), but 
they have since fallen somewhat from fashion 
because direct experimental evidence has not been 
found to support their existence, and also because 
of concerns about causality [8]. Arguments have 
been made to counter the causality objections [9], 
and the issue remains in dispute. There are several 
reasons why tachyons are still of interest today, and 
in fact interest may be increasing. First, many string 
theories have tachyons occurring as some of the 
particles in the theory [10], although they are 
generally regarded as unphysical in those theories. 
There are also several recent papers that assert 
experimental evidence that some neutrinos are 
tachyons [11, 12]. There is a new and extensive re-
analysis of tachyon dynamics [13]. There is much 
discussion in the physics literature in recent years 

 



of superluminal connections implied by quantum 
mechanics and by the evanescent wave 
phenomenon of light optics as well as quantum 
tunneling, all indirect evidence of non-locality in 
nature. These and other recent developments show 
that tachyons are still a timely subject for 
investigation.” 
                                                                                                                                             
3. Pseudo-Hermitian realization of the 
Minkowski world M 
    Let us first recall the well-known Hermitian 
model for M (see [PaSe–82a] or [Le-95]).  
     Each event (or an element of M) is represented 
by a two by two Hermitian matrix h. The totality of 
all skew-Hermitian matrices ih forms a Lie algebra 
u(2). A typical element (t,L,f) of the simply 
connected eleven-dimensional (scaling included) 
Poincare group P˜ maps h into etLhL* + f: 
 
                              h    etLhL* + f           (3.1).  
 
In the above (3.1), t is a real number, L is a matrix 
from SL(2,C), f is a Hermitian matrix. It is a well-
known action of P˜.  
     The Caley map c =cD (which has been already 
mentioned in Section 1) is defined as follows: 
 
                cD(h) = (1 + ih/2)(1 – ih/2)–1      (3.2).  
 
The image of this map is an open dense subset of 
U(2). The group P˜ acts on D=U(2), too. The Caley 
map intertwines respective actions (see Theorem 2 
of [Le-07]). The possibility of the following 
pseudo-Hermitian picture seems to have been 
unnoticed.  
     Recall that a two by two matrix h (with complex 
entries allowed) is in u(1,1) iff h*s + sh = 0, where 
s is a two by two matrix diag{1,-1}. 
     Theorem 2. There is a linear bijection Q of the 
Lie algebra u(2) onto u(1,1), and there is such a P˜-
action on  u(1,1), that one gets a commutative 
diagram (in other words, Q intertwines respective 
P˜-actions). 
     Proof. Choose the bijection Q, which maps a 

Hermitian matrix into a pseudo-Hermitian 

matrix . The resulting Q is a bijection 

between two real four-dimensional subspaces in C

dc
ba

dib
ica

−
−

4. 
If a matrix L is from SL(2,C), then it maps a 
pseudo-Hermitian matrix h into A*L'B*hALTB: 
 
                            h  A*L'B*hALTB,             (3.3) 
 
where L' is a complex conjugate of L (not a 
transpose), A = diag{1,i}, B = diag{-i,-1}, LTis the 
transpose of L. Scaling and parallel translations 
both act like before, see the law (3.1). It is a 

straightforward exercise to verify that the two 
actions commute with Q. 
 
     Let us now introduce an analogue of the Caley 
map, CF, from u(1,1) into U(1,1): 
 
       CF (h) =  [1 – (shs)/2][1 + (shs)/2]-1   (3.4). 
 
Contrarily to the original Caley map CD , its 
analogue CF is not globally defined. As it follows 
from (5.4), the determinant of [1 + (shs)/2] 
vanishes on a certain (two-dimensional) 
hyperboloid of one sheet. That is why there is only 
local pseudo-Hermitian analogue of Theorem 2 
from [Le-07]. More details are provided below. 
 
4. F–represented SU(2,2) 
 
     As part of the DLF-approach, consider the 
following matrix representation of the Lie group G 
= SU(2,2). It is conjugate to the D–representation 
(the latter has been originally introduced in Segal’s 
Chronometry; see [PaSe-82a], or [Le-95]). That 
conjugation is performed by the following four-by-
four matrix W: W is the direct sum of -1 with a 
certain three by three matrix. The only non-zero 
entries of the latter matrix are 1s on the auxiliary 
diagonal. Clearly, W2 equals the unit matrix.  
     The D–represented SU(2,2)=G (call it DG, in 
brief) was composed of a certain set of pseudo-
unitary matrices. Overall, DG has been defined 
with the help of a distinguished diagonal matrix, 
diag{1,1,-1,-1}. Under the conjugation by W we get 
S= diag {1,-1,-1,1}, which determines another copy 
of SU(2,2) (denote it by FG). Clearly, an 
isomorphism between DG and FG is carried out 
(via conjugation in SL(4,C)) by the matrix W.  
     The group FG is composed of those matrices g 
(with unit determinant), which satisfy 
  
                               g*Sg=S                     (4.1).  
 
Similarly to the D–case, it is convenient to build 
each g of two-by-two blocks A, B, C, D. The 
maximal (essentially) compact subgroup K in D–
representation consisted of block-diagonal matrices 
g, that is, B=C=0. There is an analogue of K in F-
representation, call it H. Formally, H is determined 
by the same condition as K was. Recall that the 
world F has been defined above as the Lie group 
U(1,1), see below, equipped with a certain bi-
invariant metric.   
     The above matrix S is the following direct sum 
of two-by-two matrices: 
 
                        S = diag{s,-s}, 
 
where s = diag{1,-1}. Define U(1,1) as the totality 
of all two by two matrices satisfying  
  

 



                                  z*sz=s                          (4.2).  
 
     Lemma (it is an analogue of Lemma 2.1.4 from 
[PaSe-82a]). A matrix g from SL(4,C) belongs to 
FG if and only if the following conditions hold 
 
   A*sA – C*sC = s, D*sD – B*sB = s, D*sC – 
B*sA = 0.      (4.3) 
 
     Based on (4.1) straightforward proof is omitted. 
 
     Let us now introduce the following FG-action 
on F: an element g maps a matrix z into (Az + 
B)(Cz + D)-1:  
 
                       gz = (Az + B)(Cz + D)-1         (4.4). 
  
     Theorem 3. Equation (4.4) defines (formally) a 
left action on F=U(1,1), that is, (g’g)z = g’(gz). If 
the matrix Cz+D is non-degenerate, then gz belongs 
to F.  
  The proof is omitted. 
 
     Remark 3. It can be shown that for an 
arbitrarily chosen z from U(1,1), formula (4.4) is 
well-defined in a certain neighborhood of z, and for 
elements g from a certain neighborhood of a neutral 
element in FG. Such an action is called a local one. 
     Here is an example when (4.4) is undefined. 
Take z with rows {21/2,1}, {1, 21/2}; take g 
determined by blocks  
 

           A= D = , B = C = ,  
cht0
01

sht0
01

 
where ch t = 21/2, sh t = –1, values of hyperbolic 
cosine and of hyperbolic sine.  
   Theorem 4. Equation (4.4) defines a local FG-
action on F = U(1,1). The subgroup H acts globally. 
The orbit of the neutral element (as well as the orbit 
of any other element of F) is the entire U(1,1). 
    The proof is omitted. 
 
5. Conclusions 
 
    The main finding of the article is that the 
tachyonic component F can be introduced in a way 
similar to how the D-component has been treated in 
conventional physics. It is proposed that L- and F-
components of an object can play the role of (long 
wanted) hidden variables of quantum mechanics.    
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