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In memory of Nikolay Alexandrovich Kozyrev
who saw in time the vital basis of the Universe

WHAT CAN BE OBTAINED FROM THE SUBSTANTIAL

CONCEPTION OF TIME ?

L. S. Shikhobalov

1. Introduction

Time is one of the most fundamental ideas of physics. It, or, more precisely, the
variable describing it (usually denoted by the letter t after the word “time”), enters into the
equations of motion of Newton’s classical mechanics, Schrödinger equation of quantum
mechanics, the equations describing system evolution in thermodynamics and statistical
physics and many other equations of practically all divisions of physics. Besides, time re-
mains one of the greatest mysteries of nature. Such questions of principle as: “What is the
stream of time?”, “Does the direction of time exist or not?” and a number of others have
not yet been solved conclusively and rigorously.

Modern scientific world outlook knows two essentially different conceptions of
time, the relational one and the substantial one (Chernin 1987; Molchanov 1977, 1990;
Space... 1983). According to the first one, there exists no time “per se” in nature and time
is no more than a relation (or a set of relations) between physical events. In other words,
time is a specific manifestation of the properties of physical bodies and changes occurring
in them. The second conception, the substantial one, assumes, vice versa, that time is an
independent phenomenon of nature, a specific kind of substance, coexisting with space,
matter and physical fields. The relational conception of time is conventionally associated
with the names of Aristotle, G.W.Leibnitz and A.Einstein. The most ardent adherents of
the substantial conception of time are Democritus, I.Newton and N.A.Kozyrev.

Nowadays physics is based exclusively on the relational conception of time. This
manifests itself in the fact that only matter and physical fields are regarded in all physical
theories as material objects, without any time substance of a “specific kind” involved. With
such an approach it is impossible to determine purely logically, whether a time substance
exists or not in reality, since it is impossible to prove the presence or absence of something
which is not defined.

The aim of the present paper is to formulate the fundamentals of a physical theory
based on the alternative, substantial conception of time. N.A.Kozyrev’s ideas about an ac-
tive role of time in the phenomena of our World (Kozyrev 1991) impelled the author to do
this work.
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2. Some data from linear algebra and special relativity

This section presents some data from linear algebra (Kostrikin, Manin 1986; Lang
1965; Mathematical... 1977-1985; Rashevsky 1967; Vakulenko 1972, 1992) and special
relativity (Alexandrov 1988a,b; Brillouin 1970; Chernin 1987; Einstein 1905; Fock 1961;
Hawking 1988; Kostrikin, Manin 1986; Landau, Lifshitz 1988; Logunov 1987; Mathe-
matical... 1977-1985; Minkowski 1909; Okun’ 1989, 1991; Pauli 1958; Penrose, Rin-
dler1984; Physical...1983; Polyakhov 1988; Rashevsky 1967; Sazanov 1988; Tolman
1969) to be used below directly or indirectly.

All physical events occurring in nature are ordered in a certain way. This is appar-
ent from the fact that space and time localizations of events obey a strictly fixed law: they
form a manifold possessing completely determined properties. It is usually called the
space-time manifold or simply space-time. Within the problems solved by special relativity
one may consider this manifold to possess the geometry of Minkowski space. Let us recall
the corresponding definition.

The four-dimensional real pseudo-Euclidean space of signature (1, 3) is called
Minkowski space. (Sometimes the signature (3, 1) is used.) Like any Euclidean space,
Minkowski space comprises three elements: a basis set, a vector space with scalar multipli-
cation of vectors, called the associated space to the Minkowski one, and a mapping as-
signing a vector of the associated space to each ordered pair of points from the basis set.
With regard for such a construction Minkowski space is sometimes called a point-vector
space. The vectors of the associated space and the points of the basis set are convention-
ally called vectors and points of Minkowski space itself, while the metric form defined on
the direct product of the associated space with itself, is called the metric form of Minkow-
ski space.

In special relativity it is conventional to denote by the term “Minkowski space” just
the manifold formed by space-time locations of physical events, i.e. the space-time. The
points of this manifold are called world points or events. (The latter reflects the fact that a
“physical event” is understood here in an idealized sense, namely, as a position of a point
object at a given place of space at a given time instant.)

It should be emphasized that in special relativity Minkowski space formed by
points-events is treated as a physical reality but not just as a mathematical abstraction. It is
of importance that Minkowski space is a unified manifold, unseparated into space and
time, in which it fundamentally differs from our intuitive image of the Universe. The fact
that we perceive time and space separately is related apparently to the specific character of
our organs of sense (to which we adjust our physical instruments), lying in our ability to
perceive only those characteristics of physical systems which correspond not to Minkowski
space vectors themselves but separately to their spatial and temporal components. Note
that the components of the same vector, calculated in different frames of reference, may
take different values. It is due to this fact that the spatial size of a body or the time interval
between two events may take different values being measured in different frames of refer-
ence, which is a well-known effect of relativity.
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The metric form g, setting scalar multiplication of Minkowski space vectors, is a
canonical real-valued non-degenerate symmetric bilinear form of signature (1, 3). The sca-
lar multiplication operation is denoted by a point between the multipliers:

g x y x y( , )
r r r r= ⋅ , (2.1)

where 
r
x  and 

r
y  are arbitrary vectors of Minkowski space.

It is known that any bilinear form T on a finite-dimensional vectorial space X may
be regarded as a two-valent affine tensor over X. If a scalar product of vectors is defined
on X, one can use the law: T(

r
x ,

r
y ) = 

r
x ⋅T⋅ ry , to set up a correspondence between the

form and the tensor. Here on the left-hand side of the equality T is a form and on its right-
hand side T is a tensor; 

r
x , 

r
y ∈X. In just the same way any linear operator P defined in X

may be treated as a two-valent affine tensor over X, with the correspondence between the
operator or the tensor expressed by the law P(

r
x ) = P⋅ rx , where on the left P is an operator

and on the right P is a tensor; 
r
x ∈X.

The above laws establish one-to-one linear mappings of the set of all two-valent affine tensors
over X onto the set of all bilinear forms on X (in the first case) and onto the set of all linear operators in X
(in the second case). It is of importance that these mappings are defined only by the inner properties of the
sets being connected by them. In other words, these laws set up ca n on i ca l  i som or ph i sm s between the
sets. As is known, the presence of a canonical isomorphism allows one to identify the set elements con-
nected by it. Therefore we have denoted the corresponding elements of the sets by the same symbol. It is
needless to say that the canonical isomorphisms between these sets may be established by other laws as
well, e.g., such as: T(

r
x ,

r
y ) = r

y ⋅T⋅
r
x , P(

r
x ) =

r
x P⋅ , or T(

r
x ,

r
y ) = −

r
x ⋅T⋅ r

y , P(
r
x ) = 2P⋅

r
x  (note that gener-

ally 
r
x ⋅T⋅

�

y
r
y ≠

r
y ⋅T⋅

r
x , P⋅

r
x ≠

r
x P⋅ ). In what follows we shall use the laws written above.

The metric form g, according to the aforesaid, is at the same time a two-valent af-
fine tensor, therefore it is also called the metric or fundamental tensor of Minkowski
space. It follows from the above law of correspondence between the form and the tensor
that the metric form g satisfies the relation

r r r r
x y x g y⋅ = ⋅ ⋅ (2.2)

for all 
r
x , 

r
y , where the notation (2.1) is taken into account. Using this connection and the

properties of the form g, one can prove that the form g, viewed as a tensor, satisfies the
relations

g x x g x g T T g T⋅ = ⋅ = ⋅ = ⋅ =r r r
; (2.3)

for any vector 
r
x  and tensor T. From this and from the aforesaid about the connection

between tensors and operators it follows that the form g is an identity (unit) linear opera-
tor, therefore it is also sometimes denoted by the symbol I: g = I.

By the properties of the metric form g the scalar square 
r
x ⋅ rx  of a vector 

r
x  may be

positive, negative or zero. In the first case the vector is called timelike, in the second case
spacelike, and a nonzero vector 

r
x  having a zero scalar square is called isotropic or null.

Let 
r r r r
x x x x0 1 2 3, , ,  be any four vectors of Minkowski space having nonzero scalar squares
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and orthogonal to each other in pairs (the latter means that 
r r
x xi j⋅ = 0 for i ≠ j,

i, j= 0 , 1 , 2 , 3). On the basis of the law o f iner t ia, from the fact that the metric form g
has the signature (1,3) it follows that among the above four vectors there are exactly one
timelike and exactly three spacelike ones. The timelike vector is conventionally denoted by
the index 0 and the spacelike vectors by the indices from 1 to 3. In such a numeration of
the vectors 

r r r r
x x x x ii i0 0 0 0 0 1 2 3⋅ > ⋅ < =, , , , , .

If A and B are points of Minkowski space and 
r
RA  and 

r
RB  are their radius vec-

tors, the scalar square of the vector AB
→

=
r
RB −

r
RA  is called squared interval s2 between

these points:

s AB AB R R R RB A B A2 = ⋅ = − ⋅ −
→ →

( ) ( ).
r r r r

(2.4)

Sometimes the notion of vector length (magnitude) is introduced, defined as the
number

r r r
x x x= ⋅ , (2.5)

where the non-negative value of the root is taken for 
r
x ⋅ rx  ≥ 0 or its imaginary positive

value for 
r
x ⋅ rx  < 0. The lengths of a timelike, spacelike and null vector are positive, purely

imaginary are zero respectively. A vector with a length equal to unity (imaginary unity) is
called unit (or, respectively, imaginary unit). Note that the vector length notion is intro-
duced exclusively by convention, originating in the usual presentation of Euclidean ge-
ometry. The vector length notion is not intrinsic in the theory of Minkowski space because
the root extracting operation is not used in a vector space. Moreover, this notion even in-
volves a contradiction since Minkowski space is real and no imaginary values should ap-
pear in it. The notion of vector length can be eliminated from the consideration and re-
placed by that of the real-valued scalar square of a vector.

Due to the bilinearity of the metric form g the equation (k
r
x )⋅(k r

x ) = k2 r
x ⋅ rx  is

valid for any vector 
r
x  and real number k. Hence for an arbitrary vector 

r
x  the sign of the

scalar squares of the vectors k
r
x  is the same for all k ≠ 0. Therefore in Minkowski space

all nonzero vectors, belonging to the same straight line, belong to only one of the types:
timelike, spacelike or null vectors. With regard to this straight lines are similarly called, in
particular, a straight line containing a null vector is called null. The lines whose all tangent
vectors belong to a particular type, are called in the same way.

The set of all null straight lines passing through a certain point O is called null or
light (hyper) cone with the vertex at the point O (Fig.1); it is described by the equation

OA OA R R R RA O A O

→ →
⋅ = − ⋅ − =( ) ( ) ,

r r r r
0 (2.6)
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where A is an arbitrary point of the light cone; 
r
RA  and 

r
RO  are radius vectors of the

points A and O. From Eqs. (2.4) and (2.6) it follows that the squared interval between any
point of the light cone and its vertex is
zero.

Each light cone divides Minkowski
space into three subsets: the cone itself,
being a three-dimensional hypersurface, the
interior of the cone and its external do-
main. The maximum dimension of a
Euclidean subspace passing through the
light cone vertex, with all its remaining
points located in the interior of the cone, is
equal to unity. The maximum dimension of
a Euclidean subspace passing through the
light cone vertex and otherwise located in
the external domain of the cone, is equal to
three.

A certain line in the Minkowski
space corresponds to each point material
object and describes its time evolution.
This line is called the world line of a given
object. All the world lines of nonzero mass

objects are timelike. All the world lines of zero mass objects (photons, etc.) are null.
Of utmost importance is the experimental fact of each line having an objectively

distinguished orientation, indicating the direction of object temporal evolution. It is also
important to note that the orientations of all the world lines are mutually concordant. The
latter allows one to speak of the time stream direction, the same for all objects, and to in-
troduce the concepts of the past and the future as objective characteristics of nature, inde-
pendent of the choice of a direction in which the time coordinate increases. The physical
manifestation of world line orientation concordance may be exemplified by the behaviour
of photons radiated from a single space-time point: the world rays of all such photons are
located only on one half of the light cone with a vertex at that point, although the other
half is geometrically exactly identical to the first one (see Fig.1). The first of these halves
of the light cone is called a future light cone and the second one a past light cone. This
fact of the objective distinction and concordance of the world line orientations may be in-
terpreted as the impossibility to realize in nature any solutions of dynamic equations corre-
sponding to motion of objects from the future to the past. The prohibition of such solu-
tions is sometimes called the pr inciple o f cosmological censo r ship. A physical
mechanism underlying this fact is so far unclear.

A mapping of the Minkowski space onto itself, leaving unchanged all its points and
vectors, is called the identity transformation.

We will call inversion of Minkowski space with respect to the point C the trans-
formation of this space which reverses the signs of all vectors and transforms each point

Fig.1. Cross section of a light cone by a two-
dimensional plane passing through its vertex:
One half of the light cone, Γ1 or Γ2, is the past
cone, the other is the future cone; O is the cone
vertex.



6

into the point symmetric to it with respect to C; the latter means that an arbitrary point A

of Minkowski space is transformed into the point B such that CB
→

=-CA
→

 (this equality is
equivalent to 

r
RB-

r
RC =-(

r
RA-

r
RC ), or 

r
RB = 2

r
RC-

r
RA , where 

r
RA , 

r
RB , 

r
RC  are ra-

dius vectors of the points A, B and C, respectively). The point C is called the center of in-
version.

The identity transformation and the inversion of Minkowski space are one-to-one
affine mappings of Minkowski space onto itself. Let us note that linear transformations of
the vector space associated with Minkowski space are incorporated in these mappings.
These transformations are naturally called the identity transformation and inversion of the
associated space. These transformations can be expressed in terms of the metric tensor g
viewed as a linear operator. Namely, the ident it y t r ansfo rmat ion of the vector space
associated with Minkowski space is realized by the operator g obeying the rule:

g x g x x( ) ,
r r r= ⋅ = (2.7)

while an  inver sion by the operator -g = (-1) g:

− = − ⋅ = −g x g x x( )
r r r

, (2.8)

here 
r
x  is an arbitrary vector of the associated space and the first relation from (2.3) has

been used.
Based on Eqs. (2.7), (2.8), one can write down: (g⋅ rx )⋅(g⋅ ry ) = (-g⋅ rx ) ⋅ (-g⋅ ry ) =

r
x ⋅ ry , where 

r
x  and 

r
y  are arbitrary vectors of the associated space. It follows that the

identity transformation and inversion of the associated space leave scalar products of vec-
tors unchanged, i.e., they are isometric transformations of this space. The latter means that
the operators g and -g belong to the group of orthogonal transformations of the vector
space associated with Minkowski space.

A shift, or translation on the vector 
r
x , of Minkowski space is by definition a

transformation of Minkowski space leaving all its vectors unchanged and transforming

each point A into a point B satisfying the condition AB
→

= r
x  (in other words,r

RB =
r
RA + r

x ). A shift may be clearly imagined as a parallel translation of the whole
Minkowski space by a vector 

r
x . Note that with respect to the vector space associated

with Minkowski space a shift behaves as the identity transformation. Similar to the trans-
formations defined above, a shift is a one-to-one affine mapping of Minkowski space onto
itself.

Motions of material bodies are always defined with repect to other bodies. There-
fore in physics an important role belongs to frames of reference. Any of them is repre-
sented by a set of a clock and a (three-dimensional) system of spatial coordinates con-
nected with a body with respect to which motions of other bodies are studied; this body is
called a reference body.

Inertial frames of reference, i.e. the frames in which Newton’s first law is valid,
correspond to the (four-dimensional) o r thogonal systems of coordinates in Minkowski
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space. Let {x0, x1, x2, x3} be such a coordinate system with the origin at the point O, and

{
r r r r
e e e e0 1 2 3, , , } be an orthonormal tetrad of this coordinate system (here x0 and 

r
e0  are the

temporal coordinate and the direction unit vector of the time axis; the remaining coordi-
nates and vectors are spatial). By the properties of the metric form  g  and the definition of
an orthonormal tetrad we have:

r r r r r r r r
r r

e e e e e e e e

e e i j i ji j

0 0 1 1 2 2 3 31 1

0 0 1 2 3

⋅ = + ⋅ = ⋅ = ⋅ = −
⋅ = ≠ =

; ;

( ; , , , , ) , (2.9)

i.e., 
r
e0  is a unit vector and 

r r r
e e e1 2 3, ,  are imaginary unit vectors (with the use of a metric

form of the signature (3, 1) we would have 
r
e0 ⋅ re0 = -1 and 

r
e1 ⋅ re1 =...= +1). Note that each

of the unit vectors 
r
e i can be directed in any of the two possible directions along its coor-

dinate axis; in particular, the unit vector 
r
e0 , indicating the direction in which the time co-

ordinate x0 increases, may be directed along the time axis from both the past to the future
and otherwise.

By {
r
e 0,

r
e 1,

r
e 2,

r
e 3} we denote the tetrad being mutual (dual) to the tetrad

{
r r r r
e e e e0 1 2 3, , , }. It is defined by the conditions

r r r r r r r r r r
e e e e e e e e e e i ji j0 0 1 1 2 2 3 3 1 0⋅ = ⋅ = ⋅ = ⋅ = ⋅ = ≠; ( ) . (2.10)

From Eqs. (2.9) and (2.10) it follows that the mutual tetrad unit vectors are expressed in
terms of the starting tetrad vectors as follows:

r r r r r r r r
e e e e e e e e0 0 1 1 2 2 3 3= = − = − = −; ; ; . (2.11)

Let {x0, x1, x2, x3} be a coordinate system with the origin at the point O, related to
the mutual tetrad. In a combined consideration of the coordinates {xi} and {xj} it is con-
ventional to call the former contravariant coordinates and the latter covariant ones. From
Eqs. (2.11) it immediately follows that in this case the coordinate axes of the contra- and
covariant systems of coordinates coincide, while the coordinates themselves are connected
by the relations

x x x x x x x x0 0 1 1 2 2 3 3= = − = − = −; ; ; . (2.12)

An arbitrary vector 
r
x  of Minkowski space is written in the tetrads under consid-

eration as follows:
r r r
x x e x ei i j j= = , (2.13)

where the unit vectors 
r
ei  and 

r
e j are connected by the relations (2.11), and the compo-

nents (coordinates) xi and xj of the vector 
r
x  satisfy (2.12); besides, here the conventional

summing rule over repeated upper and lower indices has been used (sum from 0 to 3).
Any two-valent affine tensor over the space associated with Minkowski space can

be represented in the following forms in the four tensor bases compiled from pair tensor
products of the above tetrads vectors:
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T T e e T e e T e e T e eij i j ij i j
j

i
i j

i
j i j= = = =⋅

⋅r r r r r r r r
, (2.14)

where tensor product of vectors is denoted without a sign of multiplication between them.
The metric form (metric tensor) g in these four tensor bases can be represented

g g e e e e e e e e e e e e e e

g e e e e e e e e e e e e e e

g e e e e e e e e e e e e e e

g e e e e

ij i j i j i j

ij i j i j i j

j
i

i j i j i j

i
j i j i

= = ⋅ = − − −

= = ⋅ = − − −

= = ⋅ = + + +

= = ⋅

⋅
⋅

r r r r r r r r r r r r r r

r r r r r r r r r r r r r r

r r r r r r r r r r r r r r

r r r r

( )

( )

( )

(

0 0 1 1 2 2 3 3

0 0 1 1 2 2 3 3

0 0 1 1 2 2 3 3

j i je e e e e e e e e e) ,
r r r r r r r r r r= + + +0 0 1 1 2 2 3 3 (2.15)

where the components of the tensor g in the bases under consideration are

g e e g e e g e e g e eij i j ij i j j
i i j i

j
i j= ⋅ = ⋅ = ⋅ = ⋅⋅

⋅r r r r r r r r
; ; ; . (2.16)

From Eqs. (2.15), (2.16) it is seen that the component matrices of the tensor g are diago-
nal in all the bases used:

( ) ( ) ( , , , ) ;

( ) ( ) ( , , , ) .

g g

g g

ij ij

j
i

i
j

= = − − −

= =⋅
⋅

diag

diag

1 1 1 1

1 1 1 1 (2.17)

Let us prove the expressions (2.15) and (2.16). Substitute the quantities 
r r
x ei= , 

r r
y ej=  and

g=gkl rek
r
el  into Eq.(2.2). Using the relations (2.10), we find:

r r r r r r r r r r
e e e g e e e g e e e e gi j i kl

k l
j kl i

k l
j ij⋅ = ⋅ ⋅ = ⋅ ⋅ =( ) ( )( ) ,

hence the first equalit y from (2.16) is obtained. The remaining ones in (2.16) are derived similarly. Based
on these equaliti es and expressions (2.9) — (2.11), we immediately obtain the relations (2.15), which con-
cludes the proof.

With the aid of the components of the metric tensor g one can carry out the so-
called “index juggling”, i.e., transform the unit vectors of the starting and dual tetrads into
each other, as well as the components of vectors and tensors referring to different bases:

r r r r
e g e e g e

x g x x g x

T T g g T g T g

i ij j i ij j

i ij j i ij j

ij kl ik jl
k
i jk

k
j ki

= =

= =

= = =⋅
⋅

; ;

; ;

. (2.18)

Pr oof . Let us decompose the vector 
r
ei  in the unit vectors of the dual tetrad: 

r
ei = eik

r
ek . Multi-

plying scalarly on both sides of this equalit y by the unit vector 
r
e j and allowing for the relations (2.10) and

(2.16), we find: ei j = gij . Substitution of these eij  into the above expansion of the vector 
r
e i leads to the first

equalit y from (2.18). The second one is proved similarly. The remaining equaliti es are easil y derived from
the first two and the expressions (2.13) and (2.14). For instance, based on (2.14) and the second equalit y

from (2.18), we have: Tij re i
r
e j = T k

j⋅ r
e k r

e j = T k
j⋅ gki re i

r
e j, whence it follows Ti j = T k

j⋅ gki.
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Each two-valent affine tensor T may be represented as a linear operator acting on
the vectors either from the left: T(

r
x ) = T⋅ rx , or from the right: T(

r
x ) = r

x ⋅T (generally
T⋅ rx ≠ r

x ⋅T). In the matrix representation of vectors and linear operators a column matrix or
a line matrix (xi) is assigned to each vector 

r
x . A tensor T corresponds to a square matrix

of its components: either ( T j
i⋅ ), if T is acting on 

r
x  from the left, ((T⋅ rx )i) = ( T j

i⋅ ) � (xj), or

( T i
j⋅ ), if it is acting from the right, ((

r
x ⋅T)j) = (xi) � ( T i

j⋅ ) (here �  is the notation for matrix

multiplication). The trace and the determinant of these matrices are called trace and de-
terminant of the tensor T:

Sp Sp SpT = (T (T

det T = det (T det (T

i

i

⋅ ⋅
⋅ ⋅

⋅
⋅

= = =

=

j
i

i
i j

i
i

j
i j

T T) ) ;

) ) . (2.19)

The trace and the determinant of a tensor may also be defined by the method that is not based on
a coordinate representation of a tensor, the relations (2.19) being derived as consequences. Thus, the trace
SpT of the two-valent tensor T may be defined as the number resulting from tensor contraction (over the
only pair of indices). With such a definition, using Eqs. (2.14), (2.16) and (2.17), we obtain:

SpT = Tij
r r

r r

r r

r r

e e T g T T T T

T e e T g T T T T

T e e T jg
j T T T T T

T e e T jg j T T T T T

i j ij ij

ij i j ij ij

j
i

i
j i

i i
i

i
j i

j i
i

i
i

⋅
⋅

⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= = − − −

= = = − − −

= ⋅ = = + + + =

= ⋅ = = + + + =

00 11 22 33

00 11 22 33

0
0 1

2
2

3
3

0
0

1
1

2
2

3
3

1

.

The first relation from (2.19) follows from here as a consequence. Note that
SpT ≠ Sp(Tij) = Sp(Tij) (the equality Sp(Tij ) = Sp(Tij) is proved by (2.17) and (2.18)). The determinant detT
of a tensor T may be defined in a similar way, irrespective of a coordinate system choice, although it would
look somewhat bulky, and then the second relation from (2.19) could be derived.

According to expressions (2.17) and (2.19), the traces and determinants of the met-
ric tensor g and the tensor -g, setting the identity transformation (2.7) and the inversion
(2.8), respectively, are

Sp Spg = ( g) = 4 ; det g = det ( g) = 1 .- - - (2.20)

In special relativity it is conventional to measure coordinates in Minkowski space in
the units of length. The traditional units: a second, a minute, an hour, etc., are used in time
measurements as well. Therefore the time coordinate x0 is expressed in terms of time using
a positive constant factor c with the dimension of velocity:

x0 = ct . (2.21)

Let us indicate the physical meaning of the coefficient c. To this aim consider an
object whose world line is a null straight line. Let 

r
R  be its radius vector. Let us present 

r
R

in the form r r r
R cte r= +0 , (2.22)
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where cte x e
r r

0 0 0=  is the temporal component of the radius vector 
r
R  and

r
r = x1 r

e1 +x2 r
e2 +x3 r

e3  is its spatial component. The radius vectors for two close points of

the object world line are 
r r r
R cte r= +0  and 

r r r r r
R dR c t dt e r dr+ = + + +( ) ( )0  (where

d
r
r = dx1 r

e1 +dx2 r
e2 +dx3 r

e3 ). The scalar square of the vector connecting these points,

(
r
R +€d

r
R )-

r
R = d

r
R  (= cdt

r
e0 +€d

r
r ),  is zero:

0 2 2= ⋅ = + ⋅dR dR c dt dr dr
r r r r

( ) , (2.23)

by the properties of a null straight line, with allowance for (2.9). Based on (2.9), we have
as well:

dr dr dx dx dx dr
r r⋅ = − − − = − ≤( ) ( ) ( ) ( ) ,1 2 2 2 3 2 2 0 (2.24)

where it is denoted: dr = ( ) ( ) ( )dx dx dx1 2 2 2 3 2+ + ; dr ≥ 0. The quantity dr is evidently

the distance between the points of the three-dimensional space at which the object under
consideration is located at the instants t and t+dt. Substituting the value dr dr

r r⋅  from
(2.24) into (2.23), we obtain

0 2 2 2 2 2 2= − = −c dt dr dt c v( ) ( ) ( ) ( ) , (2.25)

where it is denoted v =dr/dt and assumed that dt ≠ 0. It is easy to see that the quantity v
is the velocity magnitude of the above object. From expression (2.25) it follows that c = v.
Hence the factor c in Eq. (2.21) is equal to the velocity magnitude of the object whose
world line is a null straight line. As known, among these objects are photons and other
zero mass particles (as they move in vacuum). Thus, the physical meaning of the quantity
c  is to describe the velocity of photons and other massless particles, in this connection it is
conventionally called the velocity of light in vacuo.

3. The substantial model of space-time

The substantial conception of time, underlying the subsequent constructions, has a
long history. Along with the substantial conception of space, it dates back to Democritus’
ideas ascribing a special kind of being a empty space. This conception has been most fully
embodied in the Newtonian notion of absolute time. According to I.Newton, absolute time
and absolute space are self-sufficient entities, independent both of each other and of mate-
rial objects contained and processes occurring in them. It could be said that the Newtonian
ideas of time have completed the formation stage of the substantial conception of time.

The further important step in the development of the substantial conception of time
was made by N.A.Kozyrev (Kozyrev 1991). In his book “Causal or asymmetric mechanics
in linear approximation”, published in 1958, N.A.Kozyrev formulated a number of axioms
endowing time with properties in addition to duration, due to which time interacts with
different physical objects and processes. He called these properties of time physical or ac-
tive.
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To clarify the difference between Newton’s absolute time, independent of anything at all, and Ko-
zyrev’s changeable time interacting with the objects of nature, the following example could be given. In
mechanics, while describing solids, the notions of perfectly rigid and deformable bodies are used. Postu-
lating that a solid is a perfectly rigid body, we restrict its kinematical properties to the capability of moving
as a whole. Abandoning the idea of perfect rigidity and assuming that the body may be deformed, we ob-
tain an object with a variety of kinematic properties. Such a body can both move as a whole and be de-
formed reversibly or irreversibly. It can contain fixed or moving internal sources of stress, various waves
propagating, etc. Similarly, N.A.Kozyrev’s abandoning the idea of absolute time and endowing time with
properties besides duration can far enrich this notion, one of the most fundamental in physics.

Unfortunately, N.A.Kozyrev did not provide a rigorous mathematical formulation
of the notion of time substance in his papers. It should be noted that he did not use the
term “substance” with respect to time at all and spoke less certainly about time as a
“phenomenon of nature” which through its “active properties” may affect the course of
events. The absence of a clear definition of time substance is a feature of other publications
dedicated to the substantial concept of time as well. Besides, these publications neglect the
fundamental difference between the time substance and any other physical field and matter.
Namely, the time substance, if it exists, is necessarily an object of the fourth dimension,
orthogonal to the three-dimensional space embracing matter and fields. Just this conclusion
concerning the properties of the time substance undoubtedly follows from relativity.

Allowing for the aforesaid, we shall construct the theory on the basis of the fol-
lowing approach. Let us combine the substantial conception of time and the fundamental
premise of modern physics that space and time form a single manifold. For simplicity we
restrict ourselves to the case studied by special relativity when the above manifold is the
four-dimensional real pseudo-Euclidean space of signature (1, 3), i.e., Minkowski space
(see Section 2). Thus we adopt the following postulate.

Postulate  I. Space and time form a unified four-dimensional substance; it is
endowed with Minkowski space geometry and possesses certain physical properties due to
which it interacts with matter, physical fields and processes occurring in it.

We call the postulated object space-time substance and denote it by S.
In this paper we shall not specify the physical properties of the substance S but just discuss the

consequences following from this postulate and a few postulates formulated later.

Since physics is a science of three-dimensional bodies, it is reasonable to introduce
a notion unifying all the three-dimensional material objects, i.e. matter and physical fields.
This unification is conventionally called physical space. For short, we shall call it our
World. Let us define this notion more precisely.

Let us fix an orthogonal coordinate frame in the space-time substance S. We define
our World M at an instant t (in accord with the ideas of special relativity) as the three-
dimensional hyperplane of simultaneous events orthogonal to the time axis τ and crossing
it at the point with the coordinate ct, where c is the velocity of light in vacuum (Fig.2).
The World M consists of matter and physical fields in the states corresponding to the given
instant t. Note that due to a specific nature of pseudo-Euclidean geometry the hyperplane
M, the time axis τ and the instant t, generally, differ in different coordinate frames. We call
the set of the World M and the space-time substance S the physical space-time. This no-
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tion incorporates all the material objects, i.e., matter, fields and the space-time substance
available in the model being proposed.

The hyperplane of our World M occupies different positions in the space-time sub-
stance at different instants displaced with respect to one another along the time axis. A
transformation of  a space, preserving geometrical properties of figures, is called a motion
(Motion, 1979). Therefore one can say that the World hyperplane moves through the
space-time substance along the time axis. As it has been noted in Section 2, for each physi-
cal object of our World a world line orientation indicating the direction of its time evolu-
tion is objectively specified, so that orientations referring to different objects are concor-
dant with each other. This experimental fact indicates that a definite dir ect ion may be
ascribed to the World motion along the time axis. We call the domain of the substance S,
from where the World is moving, the past, and the domain, to where it is moving, the fu-
ture. The current state of the World being considered, is its present.

Let us introduce a vector 
r
V , parallel to the time axis, directed from the past to the

future and having a magnitude
equal to c; we shall call it time
direction (see Fig.2). The vectorr
V  has the meaning of the World
motion “velocity” through the
substance S because it indicates
the direction of that motion and
its magnitude 

r
V  (= c) may be

represented as a ratio of the
“path” cdt passed by the hy-
perplane M along the time axis τ
for an interval dt to the absolute
value dtof the same interval.
The terms “velocity” and “path”
are put in quotes to mark the
relative character of their usage
describing a motion along the
time axis. The vector 

r
V  is the

“velocity” of the World as a
whole; as applied to specific
physical objects existing in M

and moving in it, 
r
V  appears to be the time component of their “velocities” with respect to

the substance S. It should be emphasized that the directions of the vector 
r
V  are mutually

consistent in all coordinate frames due to the above self-concordance of the world lines
orientations of all physical objects (the vector 

r
V  itself, as well as the time axis τ and the

hyperplane M, may differ in different coordinate frames). Evidently the vector
r
V , which

Fig.2. The three-dimensional World M surrounded by the four-
dimentional space-time substance S:
The manifolds M and S are depicted with a dimensionality

reduced by 1; τ is the time axis; ct is the time coordinate; 
r
V  is

time direction (defined in the text).
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we have called time direction, is related to the unit vector 
r
e0  of the time axis by the

equality r r
V ce= ± 0 , (3.1)

where the plus sign is taken in the case of the vector 
r
e0  directed from the past to the fu-

ture, and the minus sign if otherwise.
By the aforesaid our World M moves through the space-time substance S from the

past to the future with the “velocity” 
r
V . At the same time for an observer inseparably

linked with M, this motion looks as if the substance S flowed through our World from the
future to the past with the “velocity” −

r
V . Thus the time direction 

r
V  is an objectively dis-

tinguished characteristic describing the relative motion of two physical realities: our World
and the space-time substance.

Let us make a remark concerning the model under consideration. The notion of
interaction of the space-time substance with our World is essential for this model. It is un-
likely that objects having strictly different geometric dimensionalities would be able to in-
teract with each other (e.g., a zero thick wall could be hardly felt as a barrier). Our World
has apparently a certain thickness along the time axis. The thickness is probably very small,
otherwise that fact would not have passed unnoticed by the researchers. The idea of non-
zero thickness of the World admits two different interpretations. It could be understood as
a certain fixed, determined characteristic of the World, or one might treat it in the spirit of
quantum-mechanical ideas as a microscopic “uncertainty” or “smearing” of the World
along the time axis reflecting an uncertainty in the values of time coordinates of the events
of the World. If the World has indeed a nonzero thickness along the time axis, then its
modelling by a hyperplane should be regarded as an idealization or the first approximation.
Thereby in the cases when just the zero thickness of M is of importance, e.g.,  when using
reflections in M (see below), one should understand the symbol M as indicating the middle
hyperplane of the World.

In the subsequent sections the consequences of Postulate I will be analysed, in-
cluding the possible observable effects of our World due to the action of the space-time
substance on it. Definitions and postulates, developing the model, are also introduced.

4. The time flow and time direction

Having adopted Postulate I on the existence of the space-time substance, one can
assign a clear physical sense to the general scientific concepts of the time flow and time di-
rection. Indeed, it has been noted that from the standpoint of an observer linked to our
World M the World motion through the space-time substance S looks like a stream of the
substance S through our World from the future to the past with the “velocity” −

r
V . The

fact that the substance S crosses the World in a direction parallel to the time axis allows
one to speak of it as of a “time flow” penetrating our World. In this connection the fo l-
lowing meaning can be assigned to the notions of time flow and its direction.

The time flow is the World motion through the space-time substance as perceived
from inside the World. (The mechanism of this perception may be presented in detail after
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specifying the physical properties of the substance.) Time direction is a notion reflecting
the fact that the direction of the above motion is fixed in each orthogonal coordinate frame
in Minkowski space. This direction is set by the vector 

r
V , and that was the reason for

calling it time direction. Figuratively speaking, our World is an ark sailing across the space-
time ocean and time direction is the vector specifying motion direction and velocity.

Since the space-time substance S is perceived from inside the World as a “time
flow”, it is reasonable to call it the  time substance. In what follows we shall use for the
substance S this shorter term as well.

Note that the relational outlook of time does not allow one to treat the time flow
and its direction in a way similar to that presented above. It is also impossible to introduce
a characteristic similar to the vector 

r
V . The point is that in the framework of the relational

conception of time there is no reference body, independent of M, in whose respect the
World motion from the past to the future could be considered. Such a motion would be no
more than a mental picture, not physical reality.

Modern physics is known to make only numerous unsuccessful attempts to realize
the idea of time direction (Landau and Lifshitz 1976, Section 8; Penrose 1979; Reichen-
bach 1956, etc.) in spite of the seeming easiness. Therefore such divisions of physics as
classical mechanics, relativity theory, quantum mechanics and statistical physics deal with
time having no objectively distinguished direction. The results of the present investigation
allow one to conclude that the present-day absence of a rigorous definition of time direc-
tion in physics is most likely caused by the fact that modern physics is based on the rela-
tional conception of time.

It should be emphasized that the definition of time direction as the property of the World to be
different in the past and in the future, as used in many papers (Hawking 1988, etc.), has a number of dis-
advantages.

First, here time direction is in fact substituted by its  i n h om ogen ei t y which is well known to
be related to violation of the energy conservation law. At present there is no good reason for doubt about
the validity of this law.

Second, the above definition unreasonably restricts the range of possible manifestations of time
direction in our World since it concerns only effects variable in time. (Among these effects the expansion
of the Universe and its entropy increase are mentioned most frequently.) Meanwhile, as shown in the sub-
sequent sections, such effects can exist in our World which are connected with time but constant in time.

The third disadvantage of the definition under consideration is hidden in the usage of the notions
of the past and the future. If those notions are present in the definition of time direction, this requires an
introduction of independent definitions for them, unrelated to the notion of time direction. Only one such
definition is known by now. It is based on the causality concept and uses the fact that a cause is always in
the past with respect to its effect and an effect is in the future with respect to its cause. In other words, this
definition expresses the temporal order of World events in terms of their causal order. The idea of inter-
conditionality of temporal and causal orders of events is not new in science. As early as three centuries ago
it was discussed by G.W.Leibnitz who considered the temporal order of World events to be a result of the
cause-and-effect order. However, investigations of modern philosophers (Mostepanenko 1969, 1974; Rei-
chenbach 1956, 1958; Whitrow 1961, etc.) show that most likely there is a reverse relation between the
temporal and causal orders: the temporal order is a basis for the cause-and-effect one but not vice versa.
This leads to the conclusion that the above time direction definition is logically incorrect.

This definition is unsatisfactory from the methodological viewpoint as well. Its content means es-
sentially recognition that there exists a monotonic function of time accounting for temporal inhomogeneity
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of the World. Only its gradient that can provide the desired vector characteristic, i.e., time direction. Thus
the above definition introduces time direction indirectly, in terms of another quantity. Meanwhile, an
analysis of the problem of time (Reichenbach 1956) shows that methodologically it is more consistent to
define time direction as an independent property.

5. The space-time substance as a reference body in Minkowski space

Let us compare the methods of specifying coordinate systems in special relativity
and in classical mechanics.

Classical mechanics describes motions of bodies in the three-dimensional space,
therefore the coordinate systems used in it generally comprise three spatial coordinates. As
motions of material bodies are always studied with respect to other bodies, each coordi-
nate system is related to a certain material body, the reference body. More precisely, a co-
ordinate system is introduced in such a way that a certain point of the reference body (e.g.,
its center of mass) has fixed values of coordinates remaining unchanged in the process un-
der study. The coordinate system is as though “attached” to the reference body at this
point. Moreover, in many cases a coordinate system is “attached” to the whole reference
body.

The situation is different in special relativity. Here body motions are considered in
the four-dimensional space-time manifold and therefore coordinate systems incorporate the
fourth, temporal coordinate in addition to the spatial ones. In this case the spatial coordi-
nates, as well as in classical mechanics, are connected with a certain reference body while
the values of the fourth coordinate are determined from readings of clocks at rest with re-
spect to the reference body. The fact that the clocks are assumed to go permanently means
that their temporal coordinate, which serves as a temporal coordinate for the reference
body as well, is a variable quantity. Hence the reference body, although it looks as being at

rest with respect to the given coordinate
system, essentially has only three spatial co-
ordinates fixed, whereas for the temporal one
this is not the case (Fig.3). That means that
coordinate systems introduced in Minkowski
space are not “attached” to any body, being
as though suspended in (four-dimensional)
vacuum. Thus the method of specifying co-
ordinate systems in special relativity does not
correspond to that adopted in mechanics.

The reason for the above disadvan-
tage is the fact that relativity uses the rela-
tional conception of time, assuming that
there are no material objects other than mat-
ter and physical fields. If, in accordance with
Postulate I, one assumes that along with
these objects there is a material medium of a
specific kind, i.e. the time substance S, then

Fig.3. The world line of a body at rest:
The spatial coordinates of the body have fixed
values, its temporal coordinate has different val-
ues ct1 and ct2 at the points A1 and A2.
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the above disadvantage vanishes, since just this substance serves as the reference body to
which the coordinate systems of relativity are “attached”. (This “attachment” occurs since
the coordinate systems used in special relativity are introduced in our model from the out-
set as those fixed with respect to the substance S.) Thus Postulate I enables one to recon-
cile one of the basic constructions of relativity with the general principles of mechanics.

6. “ Particles” and “ antiparticles”

The presence of the time substance and the motion of our World through it make
the two sides of the World hyperplane M inequivalent: one of them is faced against the
“time flow”, the other follows it. Assume that in our World there are objects nonsymmetric
with respect to reflection in the hyperplane M. Such objects can be described mathemati-
cally by vectors orthogonal to the World hyperplane. Let an object specified by the vector
aV
r

/
r
V  directed against the “time flow” be named a “ particle” (in quotes), and an object

specified by the vector − bV
r

/
r
V  of the opposite direction be named an “antiparticle”.

We shall consider the “particle” and “antiparticle” to be corresponding to each other if
they are described by the vectors aV

r
/

r
V  and − aV

r
/

r
V  having the same coefficient a

(Fig.4).
Here a > 0 and b > 0;

the physical dimension of the
values a and b is not specified
since it does not matter for
what follows; 

r
V /

r
V  is the

unit vector directed as 
r
V ; it is

assumed that 
r
V ≠

r
0 . Recalling

what has been said about
vector lengths in Section 2,
note that the usage of the
length 

r
V  is of no impor-

tance here since a unit vector
like 

r
V /

r
V  can always be

defined without referring to


r
V .

“Particles” and “anti-
particles” can be hypothet i-
cally exemplified by the ob-
jects shown in Fig.5a for a
World of zero thickness along

the time axis and by the ones shown in Fig.5b for a World of nonzero thickness. (Figure 5
is purely illustrative since the objects depicted in it are not meant to be compared with any
real physical bodies; the only purpose of the figure is to demonstrate that the required ob-
jects can exist at least from the standpoint of geometry.)

Fig.4. A cross section of the World M crossing a “particle” and its
corresponding “antiparticle”:
r
e =

r
V /

r
V  is the unit vector orthogonal to the hyperplane M and

having the same direction as
r
V .
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It is natural to expect that an interaction of these objects with the time substance S,
if it exists, be described by a quantity incorporating scalar product of the time direction
vector 

r
V  and a vector specifying the object (see Fig.4). For a “particle” and the corr e-

sponding “antiparticle” the above scalar product is equal to

r r
rV a
V

V
ac⋅ ±











 = ± , (6.1)

where it is taken into account that 
r
V c= ; the plus and minus signs correspond to a

“particle” and an “antipar ticle”, respectively. It follows from (6.1) that a “particle” and its
corresponding “antiparticle” interact in different ways with the substance flow S running

on one side of the World. This
fact may be perceived from in-
side the World as a difference
in some properties of the
above objects. Thus, one of
the observable effects in our
World caused by the existence
of the time substance can be a
difference between the proper-
ties of “particles” and their
“antipar ticles”.

Let us reverse the di-
rection of World motion along
the time axis, i.e. change the
sign of the time direction

r
V .

From the definition of “parti-
cle” and “antiparticle” and
from Figs. 4 and 5 it can be
seen that “particles” are
thereby converted to “antipar-
ticles” or vice versa. At the
same time from inside the
World this transformation will
be perceived differently de-
pending on the way of identifi-
cation of the above objects.
Two different cases are possi-
ble here. One consists of the
“particles” and “antiparticles”

being identified by their properties determined only by the World internal characteristics.
To put it clearer, one can imagine a certain object to be just gripped in his hand (i.e., iden-

Fig.5. Examples of “particles” and “antiparticles” in the cases of
the World M having zero (a) and nonzero (b) thickness along the
time axis:
A, B are objects causing local bulges of the World in the direction
orthogonal to M; C, D are objects which do not distort the middle
hyperplane of the World.
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tified by its unchangeable geometric and mechanical properties). Then we will of course
believe that before and after changing the sign of 

r
V  we have one and the same object.

Even its comparison with similar objects would not suggest that it has been converted into
something different, as all similar objects change in a similar way. Hence in this case the
result of the above transformation will be perceived from inside the World as a mutual
change of some properties of “particles” and “antiparticles” (namely, those caused by their
interaction with the substance S). The situation is different when objects are identified by
just the properties determined by their interaction with the time substance S. Then the re-
sult of this transformation will be perceived from inside the World as a real interconversion
of “particles” and “antiparticles”.

From the viewpoint of an observer situated inside our World, the 
r
V  sign change

looks like a reversion of the time flow direction, therefore in all physical theories the tem-
poral variable t should be replaced by −t. Hence, it is quite possible that among the pairs of
physical systems whose certain characteristics, or even the equations describing them, are
entirely converted into one another when the t sign is changed, there are just the
“particle”  — “antiparticle” pairs, having different properties just due to the action of the
time substance.

From the definition of these objects and the aforesaid it follows that a “particle”
and its corresponding “antiparticle” may annihilate when combined (since their vectors
aV
r

/
r
V  and − aV

r
/

r
V  add up to zero) and that an “antiparticle” is a “particle” moving

back in time. Real particles and antiparticles are known to possess these properties, hence
one may assume that the “particles” and “antiparticles” we have introduced here coincide
with the corresponding real objects. It is clear, however, that this conclusion cannot be
considered to be unconditionally true only on the basis of these arguments. Hence we state
it in the form of a suggestion and put the names of the introduced objects in quotes.

Note that from the standpoint of the relational conception of time the existence of
objects described by vectors orthogonal to the World M seems unlikely. According to this
conception, there are no material bodies outside our World which would interact with it,
therefore all the properties of World objects should be determined only by its internal ge-
ometry. Since from the viewpoint of internal geometry of a hyperplane its two sides are
equivalent, the presence of objects distinguishing one of the World sides would be beyond
the scope of its internal geometry. Even if objects similar to a “particle” and the corr e-
sponding “antiparticle” appeared in our World, they would be quite indistinguishable from
one another because they would interact identically with all the other objects of our World
(the latter being symmetric with respect to a reflection in M). Here, however, we should
make a reservation. If the World is not flat, its two sides turn out to be inequivalent to
each other. For example, if the World forms a three-dimensional hypersphere, then one of
its sides is faced in the convexity direction, while the other in the concavity direction. In
this case objects described by oppositely directed vectors orthogonal to the World hyper-
surface (if such objects existed) could, in principle, possess different properties.
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7. Mirror asymmetry of the World

Let us present some definitions corresponding to real Euclidean spaces of any finite
dimension.

Two geometric figures are said to be equal (identical, coincident) if they can be
made coinciding by continuous motion in the space under consideration. Two physical
systems are said to be equal (identical, coincident) if the mathematical constructions de-
scribing them are equal as geometric figures. A figure or system being an image of the ini-
tial one in a reflection in a hyperplane is its mirror reflection (the formula describing the
transformation of reflection in a hyperplane are omitted as it is evident). A geometric fig-
ure or physical system having a hyperplane of symmetry is called mirror symmetric. If a
figure (a system) has no hyperplane of symmetry, it is called mirror asymmetric. A mirror
asymmetric physical system is sometimes called dissymmetrical or chiral.

As applied to a physical system, these definitions may take into account not only
geometric but also mechanical or other system characteristics. It is clear that the referring
of a real physical system to the class of mirror symmetric systems or to that of mirror
asymmetric ones may depend on the set of its characteristics to be taken into account and
on the accuracy up to which the system and its mirror reflection are compared.

A mirror asymmetric geometric figure (physical system) and its mirror reflection
are not equal to each other. This fact allows one to introduce the concept of enantiomor-
phism. This term denotes the phenomenon of existence of pairs of mirror asymmetric fig-
ures (physical systems) each of which is equal to the mirror reflection of the other. Two
such figures or systems are called (mutually) enantiomorphous; each of them is thereby
said to be an enantiomorphous modification of the other. Allowing for the latter term, a
mirror asymmetric figure or system can be called a figure (system) being in a certain enan-
timorphous modification. As applied to physical systems, the term “enantimorphism” is
interchangeably used with the terms “dissymmetry” and “chirality”.

Let us pay attention to the fact that the concept of enantiomorphism is essentially
based on the condition by which a motion mentioned in the definition of figure equality oc-
curs within t he space under  considerat ion. Indeed, if an exit into the embracing
space were admitted, then at least in the case of proper Euclidean space any figure and its
mirror reflection could be superposed by a continuous motion. As a result, the figure and
its mirror reflection would be equal and the concept of enantiomorphism would have lost
any meaning. For example, on a proper Euclidean plane two identical circumferences with
fixed mutually opposite round-trip directions are known to be enantiomorphous and can-
not be transformed to one another by a continuous motion within the plane. However, if
one assumes the possibility of an exit into the embracing three-dimensional proper Euclid-
ean space, they can be superposed. To that end it is sufficient to turn one of them by 180°
with respect to the plane under consideration about any axis lying in it, after that the coin-
cidence of the circumferences can be achieved just by a continuous motion within the plane
(Fig.6). In a similar way the mutually enantiomorphous right- and left-screw spirals in our
three-dimensional World, unable to be coincided inside the World itself, could be trans-
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formed to one another if there were a possibility of their displacement into an embracing
four-dimensional proper Euclidean space.

The bases of Euclidean space constitute an important example of mirror asymmet-
ric geometric figures. Due
to mirror asymmetry of
bases the whole set of
them can be divided into
two unoverlapping clas-
ses, the right- and left-
oriented bases, with the
bases of each class being
connected with each other
positively in a certain
sense. Being reflecting in
a hyperplane, the bases of
the two classes transform
into one another. Some-
times these bases are
more concisely called
right and left ones.

Right- and left-oriented bases may always be put into correspondence to a pair of
enantiomorphous figures or systems. A geometric figure (physical system) to which a basis
of a certain orientation has been put into correspondence is called oriented. It should be
emphasized that only a mirror asymmetric figure (system) can be oriented. A correspon-
dence of a basis of a certain orientation to a figure (system) automatically implies corre-
spondence to the latter of the whole class of equally oriented bases. We shall subdivide the
oriented figures and systems into right and left ones in accordance with the orientation of
bases put into correspondence to them.

The notion of orientation is used in mathematics with respect to the whole space as
well. To orient a space means to choose in it one of the two classes of bases specified by
the criterion of being right or left. An orientation of space may be introduced either by a
direct choice of the class of bases, or by setting a mirror asymmetric geometric figure, i.e.,
by putting into correspondence the classes of oppositely oriented bases to the figure and to
its enantiomorphous modification by a certain rule.

The World as a whole is said to be mirror symmetric if, first, all the mirror asym-
metric physical systems and their enantiomorphous modifications are represented in it in
equal quantities and, second, any two mutually enantiomorphous systems possess the same
properties (more precisely, all the properties of one system transform into those of the
other by mirror reflection). Otherwise the World is considered to be mirror asymmetric.

The second condition in the definition of a mirror symmetric World means that identification of
physical systems is performed by only a part of their characteristics; if the systems were identified by all
their characteristics, the second condition would be fulfilled automatically because in that case all the

Fig.6. Transformation of a circumference with a fixed round-trip direc-
tion from one enantiomorphous modification to another by rotating it
by 180° about an axis lying in the bedding plane of the circumference:
AB is the rotation axis; O1, O4 are the starting and final positions of the
circumference; O2, O3 are intermediate positions of the circumference
during rotation.
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properties of enantiomorphous systems would obviously be mutually mirror symmetric (otherwise the sys-
tems would not have been enantiomorphous).

Let us return to the consideration of our model.
Since the concept of a mirror asymmetric physical system and that of an oriented

system are applicable to spaces of any finite dimension, we shall apply them not only to
three-dimensional objects of our World, but also to the four-dimensional time substance S.
Let us adopt the following postulate.

Postulate  II . The physical properties of the space-time substance S are such
that make it mirror asymmetric; this property is of local nature, i.e. each arbitrarily small
domain of the substance is mirror asymmetric.

Note that if the substance actually possesses mirror symmetry, the adoption of
Postulate II does not lead to a large error, since the theory can always be reduced to this
case by tending all the parameters characterizing the difference between two enantiomor-
phous modifications of the substance S to zero. The locality condition is adopted here to
be able to extend the conclusions concerning action of the time substance on our World to
most various physical objects, including the ones simulated by material points.

The time direction 
r
V  objectively singles out one of the two normal directions to

our World hyperplane M allowing to introduce in our World an orientation induced from
the embracing substance S.

The following method is adopted in mathematics to introduce an induced orienta-
tion in a hyperplane when a singled out normal to it has been set. One takes a basis from
the hyperplane and adds the normal singled out to its constituent vectors. This normal is
adopted as the first one from the obtained set of vectors, while the other vectors are nu-
merated in the same order which they had in the initial basis. This set of vectors forms a
basis of the embracing space. If this basis is right (left) in the embracing space, then the
initial basis of the hyperplane is also considered to be right (left). An induced orientation of
the hyperplane is fixed by chosen in it a class of bases named like that chosen in the em-
bracing space.

The hyperplane orientation introduced in such a way is evidently not a physical re-
ality but just a mathematical construction. At the same time, due to mirror asymmetry of
the time substance S and its interaction with our World, an induced orientation of the
World may really become physical reality. Let us show that it is indeed the case.

Let us set an orientation of the substance S by assigning to it a class of equally ori-
ented tetrads (which can be done due to the postulated mirror asymmetry of S). Let
{

r r r r
x x x x0 1 2 3, , , } be an orthonormal basis (tetrad) of this class (the unit vectors 

r
xi ,

i= 0 , 1 , 2 , 3 , satisfy relations of the type (2.9)). Let us form the alternated tensor product,
the polyvector

[ ]x x x x x= r r r r
0 1 2 3 (7.1)

of the vectors of the above tetrad, where the square brackets mean alternation; the tensor
product is written without a multiplication sign between the multipliers. The quantity x is
an invariant characteristic of substance S orientation, since, as is known (Rashevsky 1967),
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a polyvector formed from an orthonormal system of vectors does not change when this
system is replaced by any other systems of orthonormal vectors of the same orientation
and changes its sign when it is replaced by an oppositely oriented system of orthonormal
vectors.

Let us consider two enantiomorphous physical systems from M. We orient them by
putting them into correspondence orthonormal bases (triads) in M: a right triad

{
r r r
y y y1 2 3, , } to one of them and a left triad {

r′y1 ,
r′y2 ,

r′y3 } to the other (the vectors 
r
y i and

r′yi , i = 1,2,3, are imaginary-unit ones). We shall call these systems right and left ones, re-
spectively. From the viewpoint of internal geometry of the three-dimensional World M the
orientations of these systems is characterized invariantly by the polyvectors [

r r r
y y y1 2 3 ] and

[
r′y1

r′y2
r′y3 ]. From the standpoint of the substance S embracing the World M, the four-

valent tensors

[ ] [ ]y
V

V
y y y y

V

V
y y y= ′ = ′ ′ ′

r
r r r r

r
r r r r

1 2 3 1 2 3; (7.2)

can be used as characteristics of these systems reflecting both their orientations and their
motion along with M with respect to the substance S, where (recall) 

r
V /

r
V  is a unit

vector orthogonal to M and directed in the same way as 
�

V . Due to the above property of
polyvectors we have [

r′y1
r′y2

r′y3 ] = -[
r r r
y y y1 2 3 ], hence

′ = −y y . (7.3)
It is natural to assume that interaction of the mirror asymmetric time substance S

with these right and left systems, if it occurs, is described by a quantity containing the

product x...y for one class of systems and x...y′ for the other (dots denote the operation of
tensor contraction over all four pairs of indices). Let us prove that

x....y = −x....y′ = �  1/4! , (7.4)

where the upper and lower signs correspond to the cases when the ordered tetrad
{

r
V /

r
V , 

r
y 1,

r
y 2,

r
y 3} has the same and opposite orientation as the tetrad {

r
xi }, respec-

tively.

Pr oof.  Based on the above property of polyvectors, one can write down:

[ ]r r r r
r
r r r r

x x x x
V

V
y y y0 1 2 3 1 2 3= ±












, (7.5)

where the plus and minus signs correspond to the cases of coincidence and difference in tetrad orientations
in the left and right sides of the equality (the order of vectors is taken exactly as written). From Eqs. (7.1),
(7.2), (7.5) it follows that:

[ ]x y
V

V
y y y

V

V
y y y⋅ ⋅ ⋅ ⋅ = ±













⋅⋅ ⋅ ⋅
r
r r r r

r
r r r r

1 2 3 1 2 3 .
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Both multipliers being contracted in the right side of this expression may be represented, by definition of a
polyvector, as sums of n! terms (n = 4 for the first factor and n = 3 for the second one). Each summand in

both sums is a tensor product of the four vectors 
r
V /

r
V , 

r
y1 , 

r
y2 , 

r
y3  taken for each term in its own or-

der; the summands are endowed with definite signs and the whole sum is multiplied by 1/n!. As the vec-
tors are orthogonal in pairs, nonzero contributions to the contraction of sums are given only by those
summands where contraction comprises scalar products of the same vectors by themselves. Since these

summands have the same signs and (
r
V /

r
V )⋅(

r
V /

r
V ) = 1, 

r
y1 ⋅

r
y1=

r
y2 ⋅

r
y2 =

r
y3 ⋅

r
y3 = −1, each contri-

bution is equal to −1. The total number of these contributions is 3!, hence the sum is −3! in total. Multi-
plying this number by the coefficient ±1/(4!3!) and taking into account Eq.(7.3), we obtain the required
relation (7.4).

From Eq. (7.4) it follows that the time substance S interacts in different ways with
right and left systems of our World. From inside the World it can be perceived as a differ-
ence in the properties of these systems. Hence, as has been stated above, the World orien-

tation, induced from the time substance
embracing it, may indeed be an objec-
tive physical reality able to manifest it-
self in the form of mirror asymmetry of
the World.

Apart from the above proof, let
us confirm this conclusion by the fol-
lowing clear example.

Let us take a narrow metallic
band and twist it about its central axis
to form a screw spiral. Let us also take
a plate with a rectangular hole in the
middle, coinciding in shape with the
band cross-section. Insert an end of the
band into the hole and pull it through
the plate, as shown in Fig.7. As this was
done, the plate will rotate (the direc-
tions of band motion and plate rotation
are shown in the figure by the arrows
for the case of the band being a right
twisted spiral). An orientation in three-

dimensional space is known to be fixed by a choice of a certain twisting direction of a
screw spiral, while on the plane it is fixed by setting up the direction of rotation. In our ex-
ample there is a tough dependence between the direction of band motion and that of plate
rotation. However, we cannot yet say that this band twisting induces a certain plate orien-
tation because if the band is pulled in the opposite direction, the plate will rotate otherwise
as well.

Now let us make the two opposite directions of band pulling inequivalent. To do
that we may place a special device in the middle of the plate: the latter should leave un-
changed the described picture of band motion in one direction, while when it moves back,

Fig.7. A screw spiral rotating a plate.
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the width of the hole increases to the size of the band width, allowing the band to pass
easily through the plate without causing any rotation of the latter (it is simply realizable
technically, e.g., a humming-top contains a device like that). In this case the band motion
will l ead to plate rotation only in a strictly fixed direction. Thus, singling out the direction
of a normal to the plate, we obtain a one-to-one connection between the orientation of the
spiral and that of the plate.

The above example supports the conclusion that if a normal direction to a subspace
is singled out physically, the action on material structures of the subspace exerted by mir-
ror asymmetric structures of the embracing space may induce in that subspace a difference
between the properties of right and left systems.

Let us change the sign of the time direction 
r
V . Thereby the induced World orien-

tation will become opposite: right systems will be converted into left ones and vice versa.
At the same time, we, who are living inside the World, divide the systems into right and
left ones in accordance with only internal geometry of the World, irrespective of geometry
of the substance S. Therefore for us the change of the World orientation induced from S
will l ook like a mutual change of that properties of right and left systems which occurs due
to the action of the time substance. It has been noted above that, when the sign of 

r
V  is

changed, the time variable t in all physical theories should be replaced by -t. Consequently,
if the replacement of  t by -t transforms the properties of certain physical systems into
those of their enantiomorphous modifications, then it is not excluded that these properties
are caused just by the action of the mirror asymmetric time substance. Note that a pair of
enantiomorphous systems may be simultaneously a “particle”  — “antiparticle” pair since
the latter mutually change their properties when the sign of  t changes as well.

Examples of observable mirror asymmetry are found in spatial parity violations in
beta decays of atomic nuclei and in a number of atomic phenomena (Khriplovich 1988);
one more example is the asymmetry of planetary figures with respect to reflection in the
equatorial plane (Katterfeld and Galibina 1988; Kozyrev 1991) (in the latter case a screw
combination is formed by the gravity force vector and the angular velocity pseudovector of
the planet proper rotation; for the usual direction of planet rotation from the West to the
East this screw is left for the Northern hemisphere of the planet and right for the Southern
one).  There are numerous manifestations of mirror asymmetry in living matter, which is
most brightly expressed in the fact that the twisting of nucleic acid molecules is exclusively
right, while that of proteins is exclusively left (Kizel’ 1985). This property of living matter,
first studied by L.Pasteur, is considered by some scientists to be one of the basic indica-
tions of life (Vernadsky 1988, etc.).

By now no satisfactory explanation has been found for the effects of mirror asym-
metry of the World, in spite of numerous attempts made in this field. The failure is proba-
bly related to the fact that all these attempts have been based on the theories using the re-
lational conception of time. In the framework of those theories any physical phenomena
should be explained only on the basis of the properties of the World itself. From the view-
point of hyperplane internal geometry one cannot find a cause able to induce a difference in
the properties of right and left systems. On the contrary, the use of the substantial concep-
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tion of time, as follows from the results of the present section, gives an opportunity to re-
solve the problem of the origin of World mirror asymmetry.

While investigating li ving systems, it should be remembered that an explanation of their mirror
asymmetry in terms of action of the time substance (as any explanation based on the action of some per-
manently active external factor) faces the necessity to answer the following question. Why in the case of
natural molecule formation in li ving systems chirall y pure substances, i.e. those consisting of strictly defi-
nitely twisted molecules, are obtained, whereas racemates, i.e., approximately equal mixtures of right and
left twisted molecules, are always formed in artificial synthesis? In other words, what is the cause of the
essentiall y different action of time on li ving and inanimate systems? No answer has been given so far. The
only consideration related to this question, known to the present author, belongs to Georg Simmel, Ger-
man philosopher, who wrote that time is li fe, as long as its content is left aside (cited according to Vernad-
sky 1988, p.253).

Thus, by the results of the present and previous sections, the presence of the time
substance, the unidirectionality of the World motion through it (as specified by the vectorr
V ) and an interaction between the World and the substance may lead to a difference in the
properties of “particles” and “antiparticles” in the World; in addition, if the time substance
is mirror asymmetric, a difference between right and left systems can be obtained. It is
commonly assumed that a comparison of the World states referring to different instants is
necessary to reveal the effects related to time. The result presented here shows that it is
not the case. Some effects may be, figuratively speaking, imprinted even on an instantane-
ous photograph of the World.

N.A.Kozyrev was the first to put forward the hypothesis that the mirror asymmetry
of the World is caused by the properties of time (Kozyrev 1991, pp.232-287).

8. Physical space-time symmetry. Relation to the CPT theorem

Special relativity postulates that physical processes occur in the same way in any
inertial frame of reference. This means, in particular, that if an arbitrary physical system is
transformed from one uniform rectili near motion (with respect to a certain inertial frame of
reference) to another motion of the same kind, then all processes unrelated to external
systems will proceed exactly in the same way as they did in the initial state. Consequently,
these transformations of physical reality are its symmetry elements (which include, in par-
ticular, arbitrary turnings and transitions). Orthogonal coordinate systems correspond to
inertial frames of reference in Minkowski space, while transformations of Minkowski
space transferring one orthogonal coordinate system to another correspond to the above
symmetry elements. It is of importance that these coordinate system transformations con-
serve the concordance of time axes directions and space axes orientations (their being right
or left). The set of all such transformations forms one of the four connected components of
the Poincaré group, the isometry group of Minkowski space. Characteristic of these
transformations is that they can in principle be conducted in a continuous way.

We shall be interested in the symmetry properties of the described substantial
space-time model under inversion transformations (being one of the types of discrete
transformations of Minkowski space).
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Let a transformation of the physical space-time be called a space-time inversion if
it transfers all the points of the time substance S and our World M from the places where
they are situated to the places symmetric to them with respect to a certain point of the
World, called the centre of inversion, with simultaneous sign changes of all vector charac-
teristics of the model, including reversion of the World motion through the substance S.
We denote this transformation by the symbol Ω (without specifying the center of inversion
and the instant when the transformation occurs). Various space-time inversions, considered
as mappings of Minkowski space, together with the above continuous transformations
form one more connected component of the Poincaré group. However, unlike the trans-
formations mentioned above, they cannot be realized in a continuous way.

From Eqs. (2.8) it follows that a space-time inversion Ω transforms the Minkowski
space vectors in the same way as the operator −g:

Ω = −g:  rx  �  −g ⋅ rx  = − r
x , (8.1)

where g is the metric form of Minkowski space acting here as a linear operator; 
r
x  is an

arbitrary vector of Minkowski space. Let 
r
R be the radius vector of points of the time sub-

stance S or those of the World M, drawn from the center of inversion; 
r
V  be the time di-

rection; aV
r

/
r
V  and − bV

r
/

r
V  be vectors specifying “particles” and “antiparticles”. By

(8.1), an inversion Ω transforms these vectors by the rule

Ω : ; ; ; .
r

a
r r

a
r r

r a
r
r

r
r a

r
rR R V V a

V

V
a

V

V
b

V

V
b

V

V
− − − − (8.2)

If the model has other vector characteristics, their signs should also be changed to the op-
posite ones; the same refers to the characteristics described by any odd rank tensors (be-
cause they can be represented in the form of linear combinations of tensor products of an
odd number of vectors).

Furthermore the following transformations of the physical space-time are used
along with the inversion Ω:

I, the identity transformation; it transforms the physical space-time into itself with-
out any change in it (by (2.7), the transformation I coincides with the operator g on the set
of Minkowski space vectors);

ΩM, a restriction of the transformation Ω onto the hyperplane of our World M, i.e.,
a space-time inversion of the World with respect to one of its points (it consists of chang-
ing the signs of the radius vectors of World points and the signs of all the vectors and odd
rank tensor characteristics of the World, including those having nonzero components along
the time axis, in particular, it transforms all “particles” into the corresponding
“antiparticles” and all “antiparticles” into the corresponding “particles”); it is realized with
no change of the time substance S and the time direction

r
V ;

ΩS, a restriction of the transformation Ω to the time substance S, i.e. a space-time
inversion of the substance S with respect to a certain point lying in the hyperplane of our
World M; it leaves unchanged the World M and the time direction

r
V ;
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Ω r
V , sign change of the time direction 

r
V , i.e., reversion of the World motion

along the time axis;
P, spatial inversion, sign change of the radius vectors of all the World points, drawn

from a certain point of the World; this transformation changes the orientations of physical
objects in M: right objects become left ones and conversely; the transformation P differs

from ΩM in that it does not change any other characteristics of the World, in particular, it
leaves “particles” and “antiparticles” unchanged (although displaces them in space);

C, charge conjugation, changing the signs of the vectors aV / V  
r r

 and -b
r r
V / V ,

characterizing “particles” and “antiparticles”; it transforms all “particles” into the corr e-
sponding “antiparticles” and all “antiparticles” into the corresponding “particles”.

The latter two transformations, P and C, are contained in ΩM .

If the World M has a nonzero thickness along the time axis, then the centers of all inversions
should belong to the middle hyperplane of the World.

In Section 3 it was pointed out that the physical space-time concept incorporates
all the material objects described by the model. Since this fact is essentially used in what
follows, let us express it in the form of an independent postulate.

Postulate  III . The physical space-time embraces the whole reality.

Now let us turn to a direct description of the symmetry of our model under inver-
sions.

As it is easy to confirm, the physical space-time is transformed to itself if the fol-
lowing transformations are carried out:

perform a space-time inversion of the World M with respect to its certain point (the

transformation ΩM);
reverse the World motion along the time axis, i.e., change the sign of the time di-

rection 
r
V  (the transformation Ω r

V );

perform a space-time inversion of the substance S with respect to the same point

belonging to M (ΩS);
perform an inversion of the whole physical space-time with respect to the same

point (Ω).
Consequently, we can write down:

ΩΩ Ω ΩS V M Ir = . (8.3)

Eq.(8.3) expresses the law o f physical space- t ime symmet ry under  in-
ver sion t r ansfo rmat ions. Two requirements are of importance here: first, the inver-

sions Ω, ΩS and ΩM should be carried out with respect to the same World point; second,
all the transformations should be carried out at the same time instant. Let us formulate the
conditions under which the first of these requirements could be removed. Let us previously
prove a lemma.
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Lemma 1 . Let Q be an arbitrary domain of an affine space; O1 and O2 be any

two points of the space; Ω1 and Ω2 be inversions with respect to the points O1 and O2.
Then: (a) the images of the domain Q by the inversions, Ω1 and Ω2, differ only in their

space locations, being displaced with respect to one another by the vector 2 1 2O O
→

;

(b) the image of the domain Q by the superposition Ω2Ω1 differs from the domain Q itself

only in its position in space: it is displaced with respect to Q by the same vector 2 1 2O O
→

.

Pr oof.  In the case of a one-dimensional affine space the validity of the lemma is evident. As-
sume that the space has a dimension no less than two. Choose an arbitrary point A∈Q and consider the

plane passing through
the points A, O1 and

O2 (Fig.8). Let us de-
note by A' , A" and A' "
the images of the point
A by the inversions
Ω1, Ω2 and their su-

perposition Ω2Ω1, re-
spectively. The points
A' and A" lie in the
above plane since they
belong to the con-
tinuations of the seg-
ment AO1 and AO2

contained in it; the
point A''' belongs to
this plane as well be-
cause it is located on

the continuation of the segment A' O2. From Fig.8 it is seen that the segment O1O2 is a middle line of the

triangles AA' A'' and AA' A''' . Hence A A AA O O' " " '
→

=
→

=
→

2 1 2 , which proves the lemma due to the arbitrari-

ness of the point A.

Let us apply Lemma 1 to the whole physical space-time. In so doing, we shall
speak of its image and the images of M and S after inversions as of these objects them-
selves being in new states.

From Lemma 1 it follows that the states of the physical space-time after the inver-
sion Ω performed with respect to different centers, differ only by its displacement (transla-
tion) as a whole by a certain vector. Since according to Postulate III there is no reference
body with respect to which a displacement of the whole physical space-time could be de-
termined, such as its states are physically indistinguishable. Therefore the symmetry law
(8.3) is independent of the inversion center location used in the transformation Ω.

The situation is different for the inversions ΩS and ΩM. Being performed with re-
spect to different centers, each of them leads to different mutual positions of the World M

Fig.8. Inversions of the point A of an affine space:
O1, O2 are inversion centers; A' and A" are the images of the point A after in-
versions with respect to the centers O1 and O2; A' " is the image of A after su-
perposition of inversions.
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and the time substance S, which in principle may be detected. According to Lemma 1,
these states of the World M and the substance S differ by the World’s displacements with

respect to S along the World itself (since the centers of the inversions ΩS and ΩM lie in
M). Hence, if among the symmetry elements of the substance S there are translations by an
arbitrary vector parallel to M, in other words, if the substance S is homogeneous along
each hyperplane of simultaneous events, then such states of the physical space-time are in-
distinguishable as well and the law (8.3) is valid irrespective of whether the centers of the

inversions ΩS and ΩM coincide or not.
Thus, if the time substance S is homogeneous along each hyperplane parallel to our

World M, then the requirement that the inversions incorporated in the physical space-time
symmetry law (8.3) have a common center in M, may be removed. We would like to pres-
ent one more condition which ensures the fulfillment of the law (8.3) irrespective of the
above requirement being satisfied.

Let us consider the case when the time substance S is symmetric under an arbitrary

inversion ΩS with a center lying in M. This will be the case, e.g., if the properties of the
substance S are characterized by homogeneous scalar fields (but not vector ones (!), since

the transformation ΩS changes the signs of vectors). Let us prove the following lemma.

Lemma 2 . If the space-time substance S is symmetric under an arbitrary inver-

sion ΩS whose center lies in the hyperplane of our World M, then it is homogeneous
along each hyperplane parallel to M.

Pr oof.  Consider an arbitrary hyperplane M' parallel to the World M and choose any two points
A and B in it, belonging to the time substance S. Let O1 and O2 be points of M satisfying the condition

2 1 2O O
→

= AB
→

(as M'
�
M, such a pair of points exists and, moreover, is not unique). Denote by ΩS1 and ΩS2

the inversions of the time substance S with respect to the centers O1 and O2, respectively. Now let us act

on the substance S by the superposition of inversions ΩS2ΩS1. From Lemma 1 it follows that this proce-

dure will result in displacing the substance S forward by the vector 2 1 2O O
→

. Thereby the point A will be

transferred into the point B of the initial state of the substance since AB
→

= 2 1 2O O
→

.

By the condition of the lemma being proved, the substance S is symmetric under the inversion
ΩS. Hence its state after the inversion ΩS1 is indistinguishable from the initial one. Therefore the sub-

stance in the inverted state is symmetric under ΩS2. This means that the superposition of inversions

ΩS2ΩS1 is one of the symmetry elements of the substance S. As the transformation ΩS2ΩS1 transfers the
point A into the point B, this symmetry implies that the properties of the substance S at the points A and B
are identical. From arbitrariness of the positions of these points in M' it follows that the substance S is
homogeneous along the whole hyperplane M' . The arbitrariness of  M' in turn implies that the substance S
is homogeneous along each hyperplane parallel to M, that is what we had to prove.

Note that the reverse of Lemma 2 is not true: the homogeneity of the time sub-

stance S indicated in Lemma 2 does not necessarily imply its ΩS-symmetry. (Indeed, let the
substance S be such that its physical properties are characterized by the same vector 

r
s  at
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all its points. Such a substance is homogeneous not only along the hyperplanes parallel to

M but throughout the space-time. The inversion ΩS is, however, not its symmetry element
since it changes the characteristic 

r
s , transforming it into −r

s .)
We have shown previously that if the substance S is homogeneous along each hy-

perplane parallel to the World M, then the symmetry law (8.3) is fulfilled irrespective of
whether or not the centers of the inversions involved in this law coincide. This and Lem-
ma 2 lead to one more condition ensuring the validity of the law (8.3) for arbitrary centers
of the inversions involved. This condition consists of the symmetry of the time substance S

under any inversion ΩS with a center in M.
Let us describe some properties of the transformations of interest.

Lemma 3 .

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω− − − −= = = = =1 1 1 1; ; ; ;M M S S V V S V Mr r r , (8.4)

where the inversions entering into a single equality have a common center in M and are
realized at the same time instant.

Pr oof. From Lemma 1 it follows that the physical space-time, being subject to a superposition of

two space-time inversions Ω having a common center in M and realized at the same time instant, trans-

forms into itself. This means that ΩΩ = I. Hence follows the equality Ω−1 = Ω. Similar equalities are valid

for the transformations ΩM, ΩS and Ω r
V  as well, therefore the first four equalities from (8.4) are true.

From the symmetry law (8.3) it follows that Ω−1 = ΩS Ω r
V ΩM.  Hence,  allowing for the relation Ω−1 = Ω,

we obtain the last equality from (8.4), which completes the proof.

The last equality from (8.4) may be treated as a decomposition of a space-time in-
version Ω into component  operations: an inversion of the World M, sign reversion of the
time direction 

r
V  and an inversion of the time substance S.

We would like to present arguments in favor of regarding the space-time inversion
Ω as a symmetry element of the physical space-time.

The transformation Ω possesses the following properties. First, it is a Minkowski
space isometry, i.e., conserves the scalar products of vectors; second, it conserves the ori-
entation of the substance S, which follows from the transformation determinant being
positive: detΩ = det(−g) = 1 (see Eqs. (2.20), (8.1) and the definition of the concept of
orientation identity (Rashevsky 1967, p.142)); third, it transforms our World hyperplane
into itself (since the inversion center lies in it); finally, it transforms all the light cones into
light cones (which immediately follows from Eqs. (2.6) and (8.2)). Hence it is seen that the
transformation Ω leaves the basic geometric characteristics of the physical space-time un-
changed.

Now let us pay attention to the following circumstance. We always judge a change
of parameters of any physical system from the results of their measurements by certain in-
struments considered to be invariable, more simply, by confronting them to the corre-
sponding primary standards. However, if a standard itself is a part of the system under
study and changes together with it, a change which has happened cannot be detected with
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its aid. The transformation Ω realizes just this case. All standards available are part of the
physical space-time and change along with it. This change proceeds in such a way that the
standards serving to measure the same physical quantity change identically (the latter fol-
lows from the fact that each standard is defined ultimately by mutual arrangement of some
physical objects in space and time, while the transformation Ω, as follows from its proper-
ties indicated above, conserves the mutual arrangement of all the points of the physical
space-time). In this connection, as the symmetry properties of the physical space-time are
studied from inside our World, it is impossible to detect changes induced by the transfor-
mation Ω. Therefore, as it has been stated above, there is good reason to believe that the
inversion Ω should be regarded as one of the symmetry elements of the physical space-
time.

It should be noted that the above consideration implicitly uses Postulate III claim-
ing that the physical space-time embraces the whole reality. Indeed, if a certain entity inter-
acting with our World but not belonging to the physical space-time existed, we would be
able, if only in principle, to detect changes induced by the transformation Ω by comparing
the parameters of the World and that entity. It could be possible, for instance, if the above
entity were characterized by spatial inhomogeneity. In such a case we would have a frame
of reference independent of the physical space-time and could have fixed that, as a result
of the transformation Ω, some objects of our World were displaced with respect to the
above frame of reference to the locations where these objects had been absent in the initial
state. That alone would be evidently sufficient for asserting that Ω should not be included
among the symmetry elements of the physical space-time. However, since such an inde-
pendent entity is not observed in experiment, we are unable to detect changes induced by
the transformation Ω.

Thus, there is good reason to believe that the symmet ry group o f t he physi-
cal space- t ime as det ermined from inside t he wor ld M,  contains t he
space- t ime inver sions Ω .

From this conclusion it follows that, as long as the symmetry of the physical space-
time is studied from inside our World, the law (8.3) appears for us in the reduced form

Ω Ω ΩS V M Ir = . (8.5)

In the particular case of an ΩS-symmetric substance S the same law will take the form

Ω Ωr
V M I= . (8.6)

We emphasize that the symmetry laws (8.5) and (8.6) reflect not only the objective
properties of nature but also the peculiarities of our perception of them from inside our
World. Therefore these laws may be used only with a reservation that they describe the
physical space-time symmetry from inside our  Wor ld. Eq.(8.3) and the last equality
from (8.4) give an exact mathematical dependence between the operators involved in these
laws.
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The transformation ΩM converts the right objects of our World into left ones,
“particles” into “antiparticles” and vice versa. At the same time, from the inside of the
World it is impossible to detect these transformations, because all the primary standards,
by comparison with which we might judge of objects being right or left and of their be-
longing to “particles” or “antiparticles”, change simultaneously and similarly with the o b-

jects themselves. For this reason the result of the transformation ΩM would not be per-
ceived from inside the World as a transformation of those objects into one another. It
would be perceived instead as a mutual change of those their properties which are caused
by interaction with the substance S. However, if just these properties of the objects are de-
cisive (i.e. the objects themselves are identified by them), the result of the transformation

ΩM will be indeed perceived as a mutual conversion of “particles” and “antiparticles” and
that of right and left objects.

Suppose that the transformation ΩM causes no change in the World except inter-
conversions of “particles” and “antiparticles” and those of right and left objects. These i n-
terconversions may be regarded as the results of two transformations: respectively, the

charge conjugation C and the spatial inversion P. Therefore it may be written: ΩM = CP,

where P has the same center of inversion as ΩM. The transformation Ω r
V , that is, sign re-

version of the time direction 
r
V , reverses the stream direction of the substance S with re-

spect to M. It can be identified with the t ime rever sion t r ansfo rmat ion T, consid-
ered in physics, the latter consisting in the sign change of the temporal variable t: Ω r

V = T.

Substituting the above values of the transformations ΩM and Ω r
V  into Eqs. (8.5) and (8.6)

and allowing for commutativity of the transformations, we obtain

CPT ISΩ = ; (8.7)

CPT I= . (8.8)

Eqs. (8.7) and (8.8) correspond to the cases when the time substance S does not possess

or possesses the ΩS-symmetry, respectively. In (8.7) the inversions P and ΩS should have
the same center (as it has been proved previously, this condition is not compulsory if the
substance S is homogeneous along each hyperplane parallel to M).

Thus, within the framework of the model being described, the phenomena observ-
able in our World are characterized (under certain conditions) by the following symmetry.

They are CPTΩS invariant if the time substance S does not possess the ΩS-symmetry and

are CPT invariant in the case of an ΩS-symmetric substance S. This is the form in which
the physical space-time symmetry appears when studied from inside our World. Mean-
while, the most complete description of the physical space-time symmetry under inversion
transformations, independent of specific properties of the substance S, is given by the law
(8.3). It is just the way an “external observer”, if he could look at the physical space-time
“from outside”, would perceive the latter’s symmetry.
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Relation to the CPT theorem. In Section 6 the arguments have been advanced in
favor of the assertion that the “particles” and “antiparticles”, as they had been introduced
here, might coincide with real particles and antiparticles. If this is indeed the case, all the
transformations in Eq.(8.8) are identical to those used in physics with the same notations.
Therefore the above conclusion concerning physical space-time symmetry may be regarded
as an analogue of the well-known CPT theorem, a fundamental theorem of quantum field
theory (Okun’ 1988). By this theorem, the equations of quantum field theory are invariant
under the product of three transformations: charge conjugation C, spatial inversion P and
time reversion T. The CPT theorem is conventionally treated as the most general manifes-
tation of a symmetry law of nature. Note that the symmetry following from it corresponds,

in the model we consider, to the particular case of an ΩS-symmetric time substance S, i.e.
to the case described by Eq.(8.8). At the same time the symmetry dictated by the more

general formula (8.7) incorporates the transformation ΩS ignored by the CPT theorem. It
should be emphasized once more that the most general formula expressing the physical
space-time symmetry under inversions, is Eq.(8.3).

9. The case of proper Euclidean space-time

Many divisions of physics, including non-relativistic quantum mechanics, a number
of natural sciences: biology, chemistry, geology and others, are based on the conceptions
of Newton’s classical mechanics regarding the properties of time and space. Let us trans-
form the above substantial model of space-time to this case.

Classical mechanics postulates that space and time are absolute, i.e., independent of
the states of physical systems and processes occurring in the World. Space is considered to
be three-dimensional, proper Euclidean, and time to be one-dimensional, continuous and
homogeneous (with respect to its geometric property of duration). In fact, time in classical
mechanics is a universal scalar parameter equally varying (current) at all points of space.
The space and time defined in this way can be unified to form a four-dimensional manifold
possessing the geometry of real proper Euclidean space of signature (4, 0). This manifold

will be called, as before, space-time. We will denote its metric form by g+.

Note that the treatment of space and time as a unified four-dimensional manifold is, strictly
speaking, not equivalent to their treatment as two different essences, three-dimensional space and scalar
time. They appear, however, to be on equal terms from the standpoint of classical mechanics. The point is
that the problems solvable by classical mechanics never involve operations which might correspond to ad-
dition of spatial and temporal vectors in the model of unified Euclidean space-time. Therefore both treat-
ments lead to the same results. To reveal the difference between the two treatments and to ascertain which
of them describes the reality better, it is necessary to investigate situations in which the Euclidean proper-
ties of space-time would reveal themselves to a full extent, in particular, when vectors other than pure spa-
tial or pure temporal would be involved.

Let us fix an orthogonal coordinate system corresponding to a certain inertial frame

of reference in the “classical” space-time under consideration. Let {
r
e0

+ ,
r
e1

+ ,
r
e2

+ ,
r
e3

+ } be the

orthonormal tetrad of this coordinate system (here 
r
e0

+  is the direction unit vector of the
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time axis, the remaining vectors are direction unit vectors of the spatial axes). By definition

of an orthonormal tetrad and in view of the properties of the metric form g+ we have
r r r r r r r r

r r
e e e e e e e e

e e i j i ji j

0 0 1 1 2 2 3 3 1

0 0 1 2 3

+ + + + + + + +

+ +

⋅ = ⋅ = ⋅ = ⋅ = +

⋅ = ≠ =

;

, ; , , , , . (9.1)

In the tensor basis formed by pairwise tensor products of the vectors of this tetrad the met-

ric form g+ looks as follows:

g e e e e e e e e+ + + + + + + + += + + +r r r r r r r r
0 0 1 1 2 2 3 3 (9.2)

(cf. the expressions (9.1) and (9.2) with (2.9) and (2.15)).
The “classical” model of space and time under consideration is in complete agre e-

ment with the fundamental premise of relativity theory by which space and time form a
unified four-dimensional manifold but violates another premise of this theory endowing
this manifold with pseudo-Euclidean (in general, pseudo-Riemannian) geometry.

The results of calculations performed with the aid of the formula of special relativ-
ity are known to pass into the corresponding results obtainable within the frames of classi-
cal mechanics by making the dimensionless parameter v/c tend to zero (v is the velocity of
motion of a physical system under study and c is the velocity of light in vacuum). At the
same time, the metric form g of pseudo-Euclidean Minkowski space admits no limiting

transition to the metric form g+ of proper Euclidean space-time, which is seen immediately
when Eqs. (2.15) and (9.2) are compared. Therefore the model of space-time of classical
mechanics should be constructed as an independent one, underivable from the corre-
sponding constructions of relativity, although the two theories have much in common.

The initial postulate of the subst ant ial model o f space- t ime within the
framework of classical mechanics can be formulated as follows.

Postulate  I+. Time and space form a unified four-dimensional substance; the
latter is endowed with geometry of real proper Euclidean space and possesses certain
physical properties due to which it interacts with matter, physical fields and processes oc-
curring.

The postulated object, as before, will be called the space-time substance or simply
the time substance S. Further definitions and postulates repeat those introduced in Sec-
tions 3−8 actually word by word. Therefore, without presenting them again, let us consider
Postulates II and III, along with the definitions of the World M, physical space-time, time
direction 

r
V , a “particle” and an “antiparticle”, right and left systems and the space-time

inversion Ω to be valid in the “classical” model. Note that the situation here proves to be
somewhat simpler than in the case considered before because in proper Euclidean space-
time, unlike the pseudo-Euclidean one, the hyperplane of the World M and the time direc-
tion 

r
V  are unique for all the coordinate systems, while the time axes are parallel to one

another.
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The possibility of an extension of the definitions and postulates formulated above
to the “classical” case is explained by the fact that they do not use the metric form sign a-
ture explicitly, moreover, they are principally based on the affine properties of space-time,
which are identical in the cases of proper Euclidean and pseudo-Euclidean geometries.
Only the definition of a light cone may be called an exception. The concept of a light cone,
based on the equality (2.6), cannot be introduced in the “classical” model in principle due
to the absence of null vectors (nonzero vectors having a zero scalar square) in proper
Euclidean space-time.

One more difference between the “classical” model and the “relativistic” one corr e-
sponds to its symmetry. Since Section 8 did not use the metric form signature in the analy-
sis of model symmetry, its content may be entirely extended to the “classical” case. Hence
the “classical” model has exactly the same symmetry under inversions as the “relativistic”
one. Besides, everything that was said at the end of Section 8 concerning the relation of
the symmetry law to the CPT theorem, is true for the “classical” model. At the same time,
in the “classical” case, unlike the “relativistic” one, Eqs. (8.7) and (8.8) describing the
symmetry of phenomena observable in our World, may be derived not only using discrete
transformations of inversion, but with the aid of continuous ones, describing physical
space-time rotation, as well. Note that in the “relativistic” case a similar derivation method
cannot be realized due to the fact that the light cone is an insuperable obstacle for continu-
ous rotation of the time axis in pseudo-Euclidean space-time. Indeed, if the time axis could
pass from the interior of the light cone to its external domain in a rotation, then at the in-
stant of crossing the light cone the unit vector 

r
e0  would be converted into a null vector

with a zero scalar square, which is impossible.
Let us formulate the symmetry law of the physical space-time under rotation

transformations for the “classical” model.
Preliminarily we would like to remind that the rotation is realized: in two-

dimensional space about a point, in three-dimensional space about a straight line and in
four-dimensional one about a plane. We shall call the plane about which the rotation of a
body in four-dimensional space is performed, the plane of rotation (in a similar way as the
axis about which a body rotates in three-dimensional space is called the axis of rotation).
Note that if material points forming the plane of rotation belong to the rotating object,
then they rotate together with it, as well as do atoms lying on the rotation axes of the
Earth or of a top. We notice this evident fact in order to emphasize that in the case of ro-
tation of the whole physical space-time there remains no material point with respect to
which this rotation might be fixed.

Let us introduce the following physical space-time transformations for the
“classical” model:

Ψ, a rotation of the physical space-time as a whole by the angle 180° about some
plane belonging to the World M;

ΨM, a restriction of the transformation Ψ onto the hyperplane of our World M, i.e.
an overturn of the World M “upside-down”; it is performed by rotating the World M by
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180° about one of the planes belonging to it; it leaves the time substance S and the time
direction 

r
V  unchanged;

ΨS, a restriction of the transformation Ψ to the time substance S, i.e. a rotation of
the substance S as a whole by 180° about some plane belonging to the World M; it is per-
formed without changing the World M and the time direction 

r
V ;

Ψr
V , sign reversal of the time direction 

r
V , i.e., reversal of the World motion along

the time axis (identical to the transformation Ω r
V  from Section 8).

We shall assume that the rotations Ψ, ΨM and ΨS not only turn objects but, like

the transformations Ω, ΩM and ΩS, change their vector characteristics in a certain way.
Namely, for each vector characteristic they reverse the signs of the two (out of four) com-
ponents which are orthogonal to the plane of rotation (they as though turn these compo-

nents along with the object by 180°). Evidently the rotations Ψ, ΨM and ΨS can be real-
ized in a continuous way, i.e. by a continuous set of isometric transformations of the corre-
sponding object.

If the World M has a nonzero thickness along the time axis, then the rotation planes of all trans-
formations must belong to the middle hyperplane of the World.

The physical space-time, as it is seen directly from Fig.2, will transform into itself
after performing the following transformations: an overturn of the World M “upside-

down” by a rotation about a certain plane lying in it (the transformation ΨM); a reversal of

the World motion along the time axis, i.e. the sign reversal of the time direction 
r
V  ( Ψr

V );

a rotation of the time substance S by 180° about the same plane lying in M (ΨS); finally, a
rotation of the whole construction by 180° again about the same plane (Ψ). Hence it fol-
lows that in the “classical” case the law o f physical space- t ime symmet ry under
ro t at ion t r ansfo rmat ions is expressed by the formula

ΨΨ Ψ ΨS V M Ir = , (9.3)
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where I is, as before, the identity transformation. It should be stressed here that all the
transformations should be performed at the same instant and, in addition, the rotation

planes should coincide for the transformations Ψ, ΨM and ΨS. The requirement of coin-
ciding rotation planes may be removed if the time substance S is homogeneous along each
hyperplane parallel to the World M. This is proved by a method similar to that used in
Section 8 to prove a similar statement with respect to formula (8.3).

The remaining content of the present section is devoted to derivation of Eqs. (8.3),
(8.7) and (8.8) on the basis of the symmetry law (9.3).

Denote by Φ, ΦM, ΦS the rotations of the whole physical space-time, the World M
as a whole and the time substance S as a whole, respectively, by 180° about a plane con-
taining two crossing straight lines, one of which lies in M and the other is orthogonal to M
(i.e., parallel to the time axis). By analogy with the case of the above rotations we shall as-

sume that the rotations Φ, ΦM, ΦS reverse the signs of two out of the four components of
each vector characteristic of an object being turned, namely, those which are orthogonal to

the plane of rotation. The rotations Φ, ΦM, ΦS may be realized continuously, in such a
way that each hyperplane of simultaneous events belonging to the object being turned, will

be translated only along itself. Note that the rotations Ψ, ΨM and ΨS do not possess such
a property: any continuous realization of these rotations extracts the hyperplanes of si-
multaneous events out of their “bedding hyperplanes”. This difference between the two
types of rotations may be clarified on the example of rotation of a two-dimensional plane
in three-dimensional proper Euclidean space. Being rotated about an axis perpendicular to
it, a plane translates along itself (Fig.9a). Unlike that, in the case of rotation about an axis
lying in it, a plane goes out of its “bedding plane” (Fig.9b).

Fig.9. Rotation of a two-dimensional plane in three-dimensional proper Euclidean space: (a) about an axis
perpendicular to the plane; (b) about an axis lying in the plane:
α is the initial position of the plane; α' ,α" are current positions of the plane during rotations; AA' , BB' are
rotation axes.
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We present two lemmas, of which the first one describes some properties of the
rotations considered and the second one establishes an interrelation between the transfor-
mations Ψ, Φ and Ω.

Lemma 4.

Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ− − − −= = = = =1 1 1 1; ; ; ; ;M M S S V V S V Mr r r (9.4)

Φ Φ Φ Φ Φ Φ Φ Φ Φ− − −= = = =1 1 1; ; ;M M S S S M , (9.5)

where the operators entering into a single equality have a common plane of rotation in M
and are realized at the same instant.

Pr oof.  It is evident that the physical space-time after two successive rotations by 180° about the
same plane passes to its initial state. This means that ΨΨ = I, whence Ψ-1 = Ψ. Similar equalities also are

valid for the other rotations and 
r
V  sign reversal transformation involved in (9.4) and (9.5). Therefore the

first four equalities from (9.4) and the first three in (9.5) are true. The last one from (9.4) evidently follows
from the symmetry law (9.3) and the relation Ψ-1 = Ψ. The rotation Φ is carried out about a plane parallel

to the time axis, hence it conserves the vector 
r
V  characterizing the mutual motion of the World M and the

time substance S. Consequently, the transformation Φ consists only in rotation of the World M and the
substance S, which is reflected by the last equality from (9.5). Thus, the lemma has been proved.

Lemma 5.

Ψ Φ Φ Ψ Ω( ) ( ) ( ) ( ) (α β β α α= = �  β), (9.6)

where the symbols in parentheses by the rotation and inversion operators denote the plane
of rotation and the center of inversion, respectively; α is an arbitrary plane lying in the
World M; β is the plane containing two crossing lines: the normal to α lying in M and the
straight line orthogonal to M (α �  β is a onepoint set). Similar equalities are also valid

for the transformation triads ΨM, ΦM, ΩM and ΨS, ΦS, ΩS.

Pr oof.  Let us introduce an orthogonal coordinate system in the physical space-time, with the
origin at the point α �  β, two axes lying in the plane α and other two axes posed in the plane β (evidently
such a coordinate system exists). Let us perform a rotation Ψ of physical space-time about the plane α. It
leads to a 180° rotation of the coordinate axes situated in the plane β. Now let the physical space-time be
subject to rotation Φ about the plane β. In this case the axes lying in the plane α turn by 180°. As a result,
the directions of all the four coordinate axes turn out to be reversed. Since the rotations leave mutual ar-
rangements of the points of physical space-time unchanged, all its points in the new state have the same
coordinates in the turned coordinate system as they had in that system in the initial state. Hence, with re-
spect to the coordinate system in its position before the rotation, all points of the physical space-time
change the signs of their coordinates, which means a reversal of their radius vectors. The vector charac-
teristics of the physical space-time also reverse their directions in this procedure, since the rotation Ψ
changes the signs of their two components perpendicular to the plane α , while the rotation Φ changes the
signs of their two components perpendicular to the plane β. Hence it follows that the superposition of ro-
tations ΨΦ is equivalent to the space-time inversion Ω centered at the origin α �  β. This conclusion is
evidently independent of the succession of performing the rotations. Therefore ΨΦ = ΦΨ = Ω, i.e. the
equality (9.6) is true. The above considerations remain valid if the physical space-time is replaced by the
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World M or the time substance S, hence similar equalities are fulfilled for the transformation triads ΨM,

ΦM, ΩM and ΨS, ΦS, ΩS, which completes the proof.

Let us continue the analysis of the model symmetry.
As a result of two successive rotations by 180° about the same plane, the physical

space-time passes into itself, therefore ΦΦ = I. From Lemma 4 it follows that Φ = ΦSΦM.

A combination of these equalities gives ΦΦSΦM = I. Hence the left-hand side of formula

(9.3) does not change its value being multiplied by ΦΦSΦM. Performing such a multipli-
cation and using the commutativity of the transformations, we find:

(ΨΦ)(ΨSΦS) Ψr
V (ΨMΦM) = I .

Based on Lemma 5 and the equality Ψr
V = Ω r

V , from this relation we obtain the symmetry

law for the “classical” model under inversions:

ΩΩ Ω ΩS V M Ir = , (9.7)

here the centers of all inversions are at the intersection point of the rotation planes of the
transformations Ψ and Φ. Eq.(9.7) coincides with Eq.(8.3) from Section 8. This result
once again proves the identity of symmetries of the “classical” and “relativistic” models
under inversions.

Now let us derive Eqs.(8.7) and (8.8). Evidently it can be done with the aid of the
law (9.7) in the same way as in Section 8. We shall, however, act otherwise and obtain
these formula from the symmetry law (9.3).

It is natural to admit that the transformation Ψ does not lead to observable changes
in the World, since according to Postulate III there exists no reference body independent
of M and S with respect to which a turn of the whole construction depicted in Fig.2 might
be considered. Therefore when the symmetry of the physical space-time is studied from in-
side the World, the law (9.3) will have the form

Ψ Ψ ΨS V M Ir = . (9.8)

Let ΦM be a rotation about the plane that passes through two straight lines: the

normal to the rotation plane of the transformation ΨM, which lies in M, and the straight
line orthogonal to M and crossing that normal. Then by Lemma 5

Ψ Φ ΩM M M= , (9.9)

where the center of the inversion ΩM coincides with the  intersection point of the rotation

planes of the transformations ΨM and ΦM. Hence one can see that an inversion of the
World M can be realized by two successive rotations, one of which is associated with the
World going out of its “bedding hyperplane”, while the other is performed by World m o-
tion along itself.
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It has been mentioned previously that the inversion ΩM leads to interconversions of
“particles” and “antiparticles”, as well as that of right and left objects. Let us assume, as it
was done in Section 8, that there occur no other changes in the World under the inversion

ΩM. Then ΩM = CP, where (recall) C is charge conjugation; P is a spatial inversion; here P

has the same center of inversion as ΩM. In Section 8 it has been indicated that Ω r
V = T,

where T is time reversion. Using the values of transformations ΩM, Ω r
V  written above,

along with (9.9) and the fact that Ψr
V = Ω r

V , we come to the equalities

Ψ Φ ΨM M VCP T= =−1 ; .r (9.10)

A substitution of these expressions into (9.8), with allowance for transformations commu-
tativity, gives

CPT IM SΦ Ψ− =1 . (9.11)

According to Lemma 4, Φ = ΦS ΦM , hence Φ ΦM
−1  = Φ ΦS . Neglecting here the

transformation Φ as unobservable from inside the World, we have ΦM
−1 = ΦS . From this

condition and Lemma 5 we find: ΦM
−1 ΨS= ΦS ΨS= ΩS , where, as easily seen, the center

of inversion ΩS  coincides with the center of the transformation P. A substitution of this

value of the product ΦM
−1 ΨS  to (9.11) yields the formula to be found

CPT ISΩ = . (9.12)

In the particular case of an ΩS-symmetric time substance S Eq.(9.12) takes the form

CPT I= . (9.13)

Eqs. (9.12) and (9.13) describe the physical space-time symmetry as studied from inside
the World; they coincide exactly with Eqs. (8.7) and (8.8) from Section 8 obtained by in-
version transformations.

Thus, in the case of the “classical” model the use of both continuous rotation
transformations and discrete inversion transformations leads to the same conclusions con-
cerning the symmetry of observable phenomena of our World, with this symmetry proving
to be the same as in the “relativistic” case.

On the whole one can say about the “classical” substantial model of space-time that
the results of Sections 3−8 are practically completely applicable to it; this is due to the fact
that they are based mainly on affine (rather than metric) properties of space-time.

10. A question unanswered by modern physics

The models of space and time considered in classical mechanics, special and gen-
eral relativity, relativistic theory of gravity and other physical theories, have a common
feature: in all the models there is a concordance of time stream tempo in different frames
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of reference. Thus, in classical mechanics, employing the conception of absolute time, the
latter even streams at exactly the same tempo in all frames of reference. In special and
general relativity and in some other theories the time stream tempo can be different in dif-
ferent frames of reference, however, it is connected by a quite definite dependence for dif-
ferent frames. (Furthermore we will mention, for brevity, only special and general relativ-
ity, although the conclusions to be made are applicable to other theories as well.)

As known from relativity theory, the time stream tempo is determined by the ge-
ometry of the space-time manifold, or, more precisely, by the local value of the metric
form. Therefore, from the viewpoint of mathematics, the concordance of time stream
tempo is a consequence of the existence of such a metric form field on the space-time
manifold that the metric form values are mutually coordinated at different points of the
manifold, i.e., connected by a certain functional dependence. In special relativity the metric
form field is assumed to be homogeneous, therefore the above functional dependence is
just an identity. In general relativity, where the metric form field may be inhomogeneous,
this dependence is expressed in the form of the Einstein equations.

The common feature of the models discussed here, the concordance of the time
stream tempo, or, more generally, the concordance of the values of the metric form in dif-
ferent points of space-time, is confirmed by experiment and hence correctly reflects the
properties of nature. Therefore it is natural to ask the following question: “What is the
cause of the time stream tempo concordance (metric form value concordance) in different
points of space-time?”

Note that in discussions devoted to the properties of space and time it is sometimes asserted that,
since space and time are primary notions of physics, it is in principle incompetent to ask questions con-
cerning the causes of their properties. Certainly such a possibility must be taken into account. However, in
the author’s opinion, this conception is nevertheless unsatisfactory. If one still adheres to the approach
admitting a prohibition to put some questions in the analysis of physical reality, then it would be more
consistent to adopt the only picture of reality known nowadays to be complete and free of internal contra-
dictions, i.e., the one claiming: “All goes from God and God is incognizable”.

It would be unrealistic to believe that the concordance we are dealing with is just a
coincidence occurring by accident. Indeed, if one even admits that at the birth of the Uni-
verse the metric form and thereby the course of time were perfectly coordinated at all
points, but there existed nothing able to maintain that coordination, then the many billions
of years of Universe evolution would certainly lead to a disagreement of those values even
at points of the Universe close to each other. Thus time and the metric form would have
become random funct ions of the spatial coordinates. However, it has not happened.
Therefore it remains to admit that there exists a certain objective cause, more weighty than
a mere accident, able to provide the concordance.

It is easily assured that neither of the known physical fields or material bodies can
constitute such a cause. Indeed, as follows from general relativity, when the energy of all
fields and masses of all bodies tend to zero, the space-time manifold evolves from a
pseudo-Riemannian one, having a nonzero curvature tensor, to a pseudo-Euclidean mani-
fold (Minkowski space) where the curvature tensor is identically zero. As was done, the
metric form becomes the same everywhere and time begins to flow at the same tempo in
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all frames of reference which are mutually at rest. Thus, after a transition to empty space-
time the concordance of interest is not only unviolated but even actually turns to an entire
identity. Therefore, indeed, no field or material body can be a cause of the time stream
tempo and metric form value concordance at different points of space-time.

Surprisingly, in physical publications the problem of a cause of metric concordance
is not investigated. And herewith such a second-order effect as the possibility of metric
distortion by matter and physical fields is discussed in much detail, although its influence
on the scale of the part of the Galaxy surrounding us is negligibly small. Moreover, based
on this effect, the conceptual proposition is adopted that just matter and the physical fields
create the space-time metric, the proposition regarded to be a decisive argument in favour
of the relational conception of time. Meanwhile, this proposition is in sharp contradiction
with the fact that the main term in the expression for the metric form, the one correspond-
ing to empty space-time, in no way depends on the properties of matter and physical fields.

If, on the contrary, general relativity had led to some meaningless result in the limit of absent
matter and fields, for instance, if time passed in that case infinitely rapidly or, conversely, if it stopped, or
if it did not exist at all (as is the case, for instance, for the limit of the function sin(1/x) when x tends to
zero), then certainly we would have had every reason to believe that just matter and physical fields create
the space-time metric and even space-time itself. However, actually it is not the case.

Thus one may assert that, first, the metric concordance at different points of space-
time is maintained by some objective cause, in other words, there is a material object pro-
viding the concordance, and, second, manifestly neither matter, nor physical fields can con-
stitute that object. Hence it follows that within the modern physical theories which con-
sider matter and fields to be the only material objects, it is impossible in principle to obtain
an answer to the above question.

Meanwhile, the substantial model of space-time leads to an easy solution of this
problem. Since, according to Postulate I, the time substance S is the carrier of the space-
time metric, one can quite definitely assert that just that substance provides metric concor-
dance at different space-time points: this concordance is a direct consequence of the unity
of the substance properties in its whole volume.

However, it should be noted that this assertion is still not a complete answer to the
question of interest. The point is that the idea of metric concordance, being the basis of the
above considerations, has been taken from modern theories of space and time. Meanwhile,
in those theories the metric concordance is not a characteristic of the space-time substance
(it does not appear in those theories at all) but that of matter and fields. Therefore the as-
sertion that it is the substance S that provides metric concordance, should be supplemented
by an explanation of  how it  endows the mat t er  and fields with it s  met r ic .  The
explanation turns out to be very simple if the World and the time substance are interrelated
in quite a definite way. The next section is dedicated to working out this interrelation in
detail.
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11. Matter and physical fields as structures of the space-time substance

The substantial model of space-time under consideration admits different versions
of relations between our World (i.e., matter and physical fields) and the time substance S.

By one of the versions, our World and the substance S are mutually independent
physical realities. At first sight such an approach appears to be plausible; however, it is un-
satisfactory because it leaves unresolved the problem of metric transfer from the substance
S to the matter and fields. The situation is further aggravated by the fact that if the matter
and the fields are independent of the substance S, it is admissible to consider a limiting
case when there is no substance S at all. What happens in such a case? Are the matter and
the fields left without a metric, or, maybe, they possess a specific metric of their own,
which, according to the contents of Section 10, can be uncoordinated in different space-
time points? No apparent answer to these questions is seen. Meanwhile, as shown by prac-
tice, if the foundations of a theory leave unanswered any questions of this kind, concerning
the most fundamental features of the phenomena to be described, there is little hope that
such theory would answer them after a deep elaboration.

However, another version of the relations between the World and the time sub-
stance is possible. We will take this version as a basis. It is established by the following
postulate.

Postulate IV . The matter and all the physical fields which form our World are
not independent physical entities but are specific structures of the space-time substance.
Our World as a whole is a solitary wave (like a soliton) propagating in the space-time
substance.

The adoption of this postulate is justified by a primary nature of the notions of
space and time as compared with those of matter and field; this nature manifests itself in
the fact that the former can, at least in principle, exist without the latter, while the reverse
is not true. Indeed, the idea of Minkowski space, unfilled with matter or fields, is quite
meaningful as long as it can be given a rigorous mathematical description; unlike that, the
idea of a material body having no spatial characteristics, in particular, occupying no (even
zero) spatial volume, as well as the idea of a material process having no temporal charac-
teristics, are deprived of any physical content.

This subordinate type of relation may be exemplified by the relation between a crystal and crystal
lattice defects contained in it, such as vacancies, dislocations and others. The example of dislocations is
the closest to our topic. For this defect, being an elementary carrier of a crystal’s plastic deformation, an
equation of motion has been derived, the notion of mass has been introduced, forces acting on it due to
other defects have been calculated, etc. All that shows that a dislocation behaves in the corresponding the-
ory as an independent material object (Hirth and Lothe 1967; Shikhobalov 1978, 1982, 1990, etc.) How-
ever, actually a dislocation is not an individual material body. One cannot take it away from a crystal and
study separately by a microscope. It is just a specific state of the crystal itself, a specific structure in it, so
that a dislocation cannot exist without a crystal. Just this subordination relation between objects, such that
one of them is only a structure of the other, although it behaves in some respects as an independent mate-
rial body, is the one adopted for the model being described.
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If the time substance S is endowed with pseudo-Euclidean geometry, the wave of
our World, mentioned in Postulate IV, is, in general, different in different coordinate sys-
tems (although its propagation directions are coordinated, see Section 2). If, on the con-
trary, it is endowed with proper Euclidean geometry, then the wave of our World is unique
for all the coordinate frames. Note that in both these cases the wave of our World has a
flat shape. If the model is extended to the case studied by general relativity, the substance
S should possess the geometry of a pseudo-Riemannian space. Thereby, due to specific
effects predicted by this theory, both the substance S and our World wave will be appre-
ciably curved near structures of high energy.

The effect of matter and fields on the time substance geometry can be illustrated on the example
of disclinations, crystal lattice defects related to dislocations. A crystal lattice in a defect-free state has flat
atomic layers, while a disclination created in it causes a deformation described by a nonzero flexure-
torsion tensor (de Wit 1970, 1973a,b,c). In a certain meaning, there is a similar situation with the sub-
stance S. Having the geometry of flat Euclidean space if the matter and fields are absent, it acquires the
geometry of a curved Riemannian space when these are present, so that the curvature value near a certain
structure is the greater, the higher the energy (mass) of that structure. However, as the structures com-
monly dealt with cause very small curvatures of the substance, these curvatures can be neglected in the
first approximation.

Thus by Postulate IV the matter and fields are certain structures of the time sub-
stance (like condensations, vortices, dislocations, etc.). In such a version of the relations
between the World and the time substance the problem of metric transfer from the sub-
stance to the matter and fields, posed in Section 10, is resolved at once. As mat t er  and
fields are specific  st at es o f t he subst ance it self,  no  special met r ic  t r ans-
fer  is  r equired since t hese object s have a common met r ic  with t he sub-
st ance from the out set .

It is easily verified that Postulate IV leaves unchanged all the constructions of the
previous sections.

Apparently just one of the propositions of the previous sections could cause doubt as regards the
possibility of its extension to the case considered. It concerns the use of inversions and rotations which
transform the World M and the time substance S sepa r a t e l y fr om  ea ch  ot h er . (Such transformations
were used when the model symmetry was analysed.) The plausibility of using these transformations can be
easily illustrated again on the example of dislocations in a crystal. The fact that a dislocation is a structure
over a crystal lattice, as it is well known, does not exclude the possibility of different positions of a dislo-
cation with respect to the lattice. Similarly, in the case of the World M the fact that it is a structure of the
time substance is not by itself an obstacle for realizing its different positions with respect to the substance
S. Therefore in the present version of the model it is admissible to use the inversions ΩM and ΩS and the

rotations ΨM, ΨS, ΦM and ΦS which transform the World M and the substance S independently of each
other. Therefore all the conclusions of Sections 8 and 9 concerning the model symmetry, remain valid for
the model version incorporating Postulate IV as well.

We would like to restrict the discussion of the present version of the model to a
few brief comments.

Evidently, the idea of a time substance satisfying Postulate IV, is in some respects
close to the quantum-field-theoretical concept of physical vacuum from which particles of
matter are created. Meanwhile, our model is free of a certain ambiguity inherent in the
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physical vacuum concept. The latter consists in the fact that the term “vacuum” in its very
sense denotes emptiness, i.e., absence of anything at all, and at the same time in quantum
field theory vacuum is endowed with certain physical properties, i.e., is actually treated as
a material object. Such an ambiguity certainly cannot favour further development of the
theory.

The suggested model version observes the famous Occam principle (Okun’ 1988,
p.187) claiming that essences should not be multiplied without necessity. Here, instead of
numerous sorts of matter and physical fields there is only one essence, the time substance,
while all the rest is just its structures.

The fact that modern physical theories are successful in describing the properties of
matter and fields without addressing to a time substance forming them, does not mean that
such a substance is absent. Recall that lately in the 19th century it was also believed
(Physicists Joke 1966, p.32) that the then available physical theories were quite sufficient
for describing the properties of matter, although nothing was known about the elementary
particles forming it. By the way, modern physics is successful in doing without the notions
of life, man, consciousness (such notions are just absent in either “Physical Encyclopaedic
Dictionary”, or in subject indices to the ten volumes of “Theoretical Physics” by
L.D.Landau and Ye.M.Lifshitz), which nevertheless does not mean that those phenomena
do not exist.

A difference between the presently introduced time substance and the known ether
models is as follows. The time substance S is four-dimensional, while ether is three-
dimensional. The substance S flows across our World normally to it, while ether is at rest
with respect to the World as a whole (in this connection it is often considered as an abso-
lute frame of reference). The substance S possesses pseudo-Euclidean geometry and
therefore satisfies all the statements of special relativity while ether is commonly endowed
with proper Euclidean geometry, leading it to contradictions with relativity.

That the time substance has not yet been discovered by experiment, can be ex-
plained by the fact that the physical instruments available and our organs of sense are able
to interact only with matter and fields but not directly with the time substance forming
them.

Here again it is pertinent to draw a parallel with a crystal containing a dislocation. As known
(Hirth and Lothe 1967), in an infinite crystal a rectilinear dislocation at rest is not subject to forces from
the crystal lattice. Only as a dislocation moves, the crystal lattice exerts an influence on it, hindering its
motion (the so-called Peierls resistance). However, even this influence is small as compared with the hin-
dering action of other defects in many crystals. Therefore it could be said that a dislocation does not “feel”
the surrounding crystal; in other words, “from the viewpoint” of a dislocation no crystal exists at all, there
is only itself and other defects of the same kind. In exactly similar fashion our sensual and instrumental
feelings might deceive us saying that there is no time substance, although maybe it is the one we are con-
sisting of.

Thus the suggested substantial model of space-time in its version incorporating
Postulate IV, easily resolves the question of why the metric is coordinated in different
space-time points, the question having no answer in modern physical theories. This version
of the model reduces the properties of all the physical objects of our World to those of the
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time substance. A further development of the model should consist in concretizing physical
properties of the substance which would satisfy Postulates I - IV.

12. Conclusion

Space-time as a four-dimensional substance and the three-dimensional World mov-
ing through it are the basic features of the suggested model. It gives a clear meaning to the
notions of time flow and time direction and easily proves a proposition on the World sym-
metry similar to the CPT theorem of quantum field theory, while the method of specifying
space-time coordinates is brought into correspondence with that adopted in mechanics. It
is shown that the observed mirror asymmetry of the World, along with its asymmetry with
respect to particles and antiparticles, can be consequences of the action on the World ex-
erted by the space-time substance. A version of the model has been suggested in which our
World is a specific structure of the space-time substance. It has been possible to obtain all
these results without knowing the physical properties of the substance. Their specification
is a subject of further investigations.

N.A.Kozyrev’s results concerning the properties of time and those of the present
paper constitute just an initial stage in the development of the substantial model of space-
time; however, even they testify that this model has a rich potential. Therefore the question
taken as the title of the present article, namely, “What can be obtained from the substantial
conception of time?”, is to be answered in the following way: this conception can give an
understanding of the essence of space and time, the basic concepts of natural science,
which would be deeper and more adequate to reality than the existing one.

Some of the problems considered in the present paper and in the other two articles of the present
author placed in this book, have been previously discussed in several papers (Shikhobalov 1988a,b,
1991a,b).

The author expresses his deep gratitude to E.L.Aero, A.D.Alexandrov, V.A.Anto-
nov, A.D.Chernin, Yu.M.Dal' , Yu.I.Kopilevich, S.E.Kozlov, A.V.Krivov, A.P.Levich,
V.M.Lomovitskaya, K.L.Malyshev, V.V.Orlov, Yu.A.Romashov, V.A.Shvetsova, A.V.Sol-
datov, A.A.Vakulenko and S.I.Vasilyev for discussing the papers included in the present
edition and for useful comments which provided a refinement of some propositions of the
theory.
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