Нейтрино – элементарные частицы, не имеющие электрического заряда и не вступающие в сильное ядерное взаимодействие. Реагировать с другими частицами нейтрино могут за счет слабого ядерного взаимодействия. Это взаимодействие не случайно получило название "слабое": поток нейтрино, возникающих при бета распадах, без ослабления проходит слой вещества толщиной, сопоставимой с межзвездными расстояниями.

Возможно, что нейтрино способно очень слабо взаимодействовать с электромагнитным полем, так как теоретики допускают наличие у этих частиц магнитного момента, хотя и очень малого. Нейтрино - идеальные объекты для проявления торсионного взаимодействия в наиболее "чистом" виде, поскольку собственное вращение (спин) - единственный параметр, по которому эти частицы не "уступают" другим. Но свойства торсионного взаимодействия пока известны недостаточно хорошо для того, чтобы можно было сделать количественные оценки.

В настоящее время известно о существовании шести типов нейтрино (электронное, мюонное, тау-нейтрино, а также их античастицы). Из трех основных параметров, характеризующих элементарные частицы, у нейтрино достоверно известны два: спин, равный спину электрона и электрический заряд, равный нулю. О массе нейтрино достоверных экспериментальных или теоретических данных нет.

Долгое время считалось, что нейтрино, подобно фотонам, не имеют массы покоя. Эксперименты, проведенные в 70 - 80 годах, показали, что электронные нейтрино имеют массу примерно в 20.000 раз меньше массы электрона (20-30 эВ). Дальнейшие эксперименты не подтвердили эти результаты, и в настоящее время считается, что масса электронного нейтрино не превышает 10 эВ, а возможно и много меньше 1 эВ. Мюонные и тау-нейтрино, возможно, значительно более массивны, чем электронные, но измерение их массы - задача пока нерешенная.

Нейтрино - столь же широко распространенные во Вселенной частицы, как и фотоны. Они возникают при распадах атомных ядер и элементарных частиц, очень много их возникает в недрах звезд (в том числе, в Солнце). Это - нейтрино высоких энергий, движущиеся с околосветовыми скоростями. Еще больше в Природе нейтрино очень низких энергий, имеющих скорости порядка 1000 км/с и меньше. Они возникли на начальных этапах формирования Вселенной (отсюда их название - реликтовые нейтрино) и в настоящее время входят в состав галактик и других космических объектов, внося свой вклад в скрытую массу. Величина скрытой массы намного больше суммарной массы звезд и других объектов из "обычного" вещества, состоящего из протонов, нейтронов и электронов.

До недавнего времени для любого физика, знакомого со свойствами нейтрино, идея о том, что эти частицы могут играть какую-то роль в нашей жизни, казалась абсурдной. Ведь на гигантской установке, предназначенной для регистрации потока нейтрино от Солнца, регистрировалось всего несколько частиц в год! Теоретические и экспериментальные исследования, проведенные в последние 10 - 15 лет, показали, что роль нейтрино может быть существенно более значительной, чем это предполагалось раньше. Но не тех нейтрино, которые возникают при ядерных реакциях и распадах, а нейтрино ультранизких энергий, имеющих энергию в миллиарды раз меньшую. Это - уже упомянутые "реликтовые" нейтрино, входящие в состав скрытой массы Вселенной.

Нейтрино ультранизких энергий - самое распространенное вещество Вселенной. Их концентрация, в среднем по Галактике, составляет 107 - 108 частиц/см3. Еще больше их может собираться в гравитационных полях небесных тел. В то же время, выяснилось, что в противоположность ранее существовавшим представлениям, нейтрино ультранизких энергий взаимодействуют с веществом несравненно более эффективно, чем нейтрино "ядерных" энергий. Это связано с тем, что, в соответствии с принципами квантовой механики, взаимодействием охватывается область размером порядка длины волны де-Бройля, которая, ввиду малости импульса нейтрино ультранизких энергий, достигает нескольких миллиметров. При движении такой частицы в веществе взаимодействием охватывается огромное число атомов, и итоговый эффект становится большим даже при малости "индивидуальных" взаимодействий. Заметим, что длина волны де-Бройля "ядерных" нейтрино намного меньше размеров атомов, поэтому они могут взаимодействовать лишь с одним электроном или ядром.

Взаимодействие нейтрино ультранизких энергий с веществом подобно взаимодействию света или радиоволн со средой, обладающей очень высокой прозрачностью. В однородной прозрачной среде распространение излучения происходит прямолинейно и без обмена энергией. Но на неоднородностях, на границах сред с различными физическими свойствами происходит преломление и отражение, т.е. изменение направления распространения. При этом энергия частиц (квантов) тоже не меняется. Изменение направления движения означает изменение импульса, с которым связано действие силы на фрагмент вещества, где произошло это изменение. Таким образом, нейтрино (так же как и свет в прозрачной среде), взаимодействует с веществом своеобразно: поток излучения оказывает механическое давление при отсутствии энергообмена.

Значительное энерговыделение возможно лишь при взаимодействии нейтрино ультранизких энергий с бета радиоактивными ядрами, а также в результате процессов в самих этих потоках: аннигиляции частиц и античастиц и, возможно, распадов нестабильных частиц (есть гипотеза о нестабильности нейтрино с периодом полураспада порядка миллиарда лет). При этом возникают фотоны с энергией, соответствующей массе покоя проаннигилировавших (распавшихся) частиц. Эти фотоны интенсивно взаимодействуют с веществом, действуя подобно ионизирующей радиации.

Теоретики предсказали "нейтринные осцилляции" - периодическую смену типов нейтрино. При энергиях, характерных для реликтовых нейтрино, превращение электронного нейтрино в мюонное, мюонного в тауонное должно происходить настолько часто, что во взаимодействиях они должны проявлять свойства всех трех типов нейтрино одновременно. Поэтому, например, эффективная масса реликтовых нейтрино может быть значительно больше массы электронного нейтрино, измеряемой при высоких энергиях.

Энергия фотонов гамма-излучения и радиоволн отличается на 10 порядков. Мы знаем, как сильно различаются свойства этих двух разновидностей электромагнитного излучения. Столь же велико различие по энергии "ядерных" нейтрино и нейтрино ультранизких энергий, и столь же велико различие их свойств. Взаимодействие нейтрино с веществом при ультранизких энергиях принимает формы, при которых эти слабовзаимодействующие частицы становятся фактором, роль которых в окружающем нас мире нельзя игнорировать.

Реликтовые нейтрино являются носителями космоземных связей наряду с электромагнитным излучением и космическими лучами.

А.Г.Пархомов