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1 Introduction

Isham and Döring [1] put forward a fundamental conception of how any
physical theory should be constructed. They proposed to look for topos
representation of the formal language used in the theory. The known and
chronologically preceding example of such an approach is the work [2] by
Fotini Markopoulou. She considered from a novel view-point the properties
of the causal set C which is the discrete analog of space-time from general rel-
ativity. The interest to causal sets is stipulated by hypothetical discreteness
of space-time at sub-Planck scale. The causal set C is also the central notion
of the present work. It is a partly ordered set of all events. Some ordered
event pairs 〈e, e′〉 in C are causally related: e Ã e′. That means that e′ is
a consequence of e or, equivalently, e is a cause of e′. The causal relation is
reflexive (for any e in C one has e Ã e), transitive (from e Ã e′ and e′ Ã e′′

follows e Ã e′′) and antisymmetric (if e Ã e′ and e′ Ã e, then e = e′). The
last condition guarantees the absence of closed causal loops. We also assume
the absence of the last event efin which is the consequence of any other event
in C. This is important for the subject of the present work being non-trivial.

The partial order in C let one consider it as a category with the events as
objects and causal relations between them as arrows (morphisms). So the set
MorC(e, e′) of morphisms from e to e′ consists of at most of one element just
in the case when e is the cause of e′. Using the notions of category theory,
Markopoulou introduced the (covariant) functor Past from the category C
to the category of sets Set. To any event e from C this functor associates the
set Paste = {e′ ∈ C : e′ Ã e} (the set of all causes with respect to e), and
to any causal arrow e1 Ã e2 – the map Paste1e2

: Paste1
→ Paste2

which is
the inclusion of sets.

The functor Past from [2] has simple physical meaning: Paste is the
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memory content for an observer localized in e. Note that the complete causal
structure of space-time is reflected in Past. The approach of the present
work to C is also realized as a view-point of localized observers. But some
other properties of the causal set are in focus. We are going to address the
branching properties of space-time. The very notion of "branching" will
get the strict sense. The motivation beyond the approach is to elaborate a
logical framework for considering multivariant future by a local observer. So
the subtitle of the present work (in the style of [2] subtitle) can be the phrase
"What should the branching Universe be thought of from the inside?".

We are going to build the topos representation of Nuel Belnap’s branching
space-time theory [3]. The aim of the branching space-time conception is
the reconciliation and unification of indeterminism and relativism. In the
following section the central notion of the branching space-time theory, the
so-called Belnap "world" (Belnaps calls it "history"), is introduced along
with basic notions of categories. Because the ideas of topos mathematics
has not yet become widely known, the present work is aimed to be in its
considerable part an introduction to basic notions of topoi. In the third
section we give the main elements of topos approach in application to the
model of branching space-time and show the origin of its natural non-classical
logic. The application of universal topos construction of local semantic values
to propositions of the natural logic is made in the fourth section.

2 Basic notions

First we provide and discuss the required formal and methodological tools.
Let us digress for a while on the main notions of category theory. It is known
[4], that any category C is specified by its objects and morphisms (arrows)
between them. For some arrows the following composition law is defined. Let
MorC(c, c′) be the set of arrows (morphisms) beginning and ending at the
objects c and c′, respectively. There is a rule by which to any ordered pair of
morphisms from the direct product MorC(c1, c2)×MorC(c2, c3) an element
(morphism) from MorC(c1, c3) is assigned, their composit. The composition
law is associative and in every MorC(c, c) there is an identity morphism 1c

which acts as a left unit in compositions with elements from MorC(c, c′) and
as a right unit in compositions with elements from MorC(c′, c). The most
important category is Set with sets as objects and maps between sets as
morphisms.

Covariant functor F from category C1 to category C2 is a rule of "pro-
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jecting" the category structure of C1 onto C2. To every object c from C1 an
object Fc from C2 is assigned. Similarly, the functor assignes to every mor-
phism f from MorC1

(c, c′) some morphism Ff from MorC2
(Fc,Fc′). The

identity morphisms as well as composits are respected by the functor. The
specific of contravariant functor is in inversion of morphism directions: to f

from MorC1
(c, c′) there assigned the morphism Ff from MorC2

(Fc′,Fc).
The functors from a category C1 to a category C2 can be considered

as objects of a new category CC1
2 . Morphisms between such functors are

called natural transformations. The examples of natural transformations
will appear later in the text.

We need not the strict definition of topos as a special type of category [5].
In some sense all topos are like the classical topos Set – the category of sets.
It is important for us that if C2 is a topos, then CC1

2 is a topos also. Below
the topos SetC is used.

Considering C as a branching space-time, it is convenient to introduce
subsets from C without branching and, hence, without indeterminism at all.
The richer is the collection of such branchless subsets, more branching is the
causal set C. These subsets will be called Belnap worlds and, following [3],
are defined as maximal upward (i.e. towards future) directed subsets of C.

The demand of being directed is natural and motivated by evidently in-
dispensable property of any branchless world – for any two events e1 и e2 in
a world w, there should be their common consequence e in w: e1 Ã e and
e2 Ã e. The maximality does not allow a world to be a proper sub-world
in a wider world. Now the condition of absence of the last event efin ("Big
flap") in C is clear. In other case C is the single maximal directed set and
the subject of the present work becomes trivial.

The standard application of Kuratovski-Zorn’s lemma proves any event
pertaining to some Belnap world: given any growing chain of directed sets
which contain the event, one can note that their union is an upper bound
of the chain. Thus a maximal directed subset in C exists and contains the
event. There may happen no Belnap world for a pair of events e1 and e2

to live in. Such events are called incompatible. The alternative outcomes of
a quantum measurement is an example of incompatible events. One should
not mix the notion of incompatible events with causally unrelated events.
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3 Main object and subobjects

We are going to deal with some contravariant functors, called presheaves,
from C to Set, i.e. the objects of the topos SetC

op, where the category Cop

can be formed, given by C, by reversing the direction of all causal arrows. In
this point our approach differs with that of [2], where covariant functors are
used.

Let W be the set of all Belnap worlds in C. There is a simple but important

Theorem 3.1. Assigning to an event e the set of Belnap worlds Loce =
{w ∈ W : e ∈ w}, one defines the functor Loc from Cop to Set.

Proof: The sets Loce define the function of objects of the functor. We have
to clarify the nature of function of causal arrows e1 Ã e2 from C. This should
be a map

Loce1e2
: Loce2

→ Loce1
, (1)

The map is set inclusion. To prove the fact one should involve the maximality
of Belnap worlds, which lead to the closeness of any world with respect to
causes [3]: if e is a cause of e′ ∈ w, i.e. e Ã e′, there is in w a common
consequence of e and e′′, where e′′ is any event in w (due to transitivity of
causal relation this common cause can be chosen among common causes of e′

and e′′ which exist because of the directed nature of the world). Hence, the
world w can be extended by inclusion of e. But w is maximal and can not be
extended – the event e has been already included in w. It follows that every
world containing e2, contains e1 as well and, so, Loce1e2

(1) is inclusion.

The functor Loc is in some sense analogous to the functor Past from [2]
and is of importance also. Loce is the set of worlds an observer localized in
e considers as "her worlds".

It is worth to introduce the presheaf Glob (the counterpart of the functor
World from [2]):

Globe = W, (2)
and for e1 Ã e2

Globe1e2
= idW : Globe2

→ Globe1
, (3)

There can be introduced morphisms between functors from Cop to Set,
considered as objects of the category SetC

op. The morphisms are called nat-
ural transformations [4]. In particular, the natural transformation

[ιLoc] : Loc→ Glob (4)
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is the set {[ιLoc]e : e ∈ C} of maps [ιLoc]e : Loce → Globe,which make the
following diagrams commutative:

Loce2

[ιLoc]e2−−−−→ Globe2

Loce1e2

y yGlobe1e2
=idW

Loce1

[ιLoc]e1−−−−→ Globe1

(5)

for any causal arrow e1 Ã e2, i.e. idW ◦ [ιLoc]e2
= [ιLoc]e1

◦ Loce1e2
. In this

simple case the components [ιLoc]e, of the natural transformation (4) are set
inclusions. This let the functor Loc be considered as a sub-functor of Glob.
If one calls Glob the object in SetC

op, then Loc is the subobject.
The set of subobjects of Glob is important in the topos approach to the

branching space-time. The set of subobjects in any topos is known to be
endowed with the structure of Heyting algebra [5]. It is a model of a natural
language of the considered system (the branching space-time C) [1]. The
logic of the language is not classical one based on Boolean algebra. Logical
operations are realized as algebraic operations on subobjects of Glob. The
conjunction F∧G, models the logicaoperation "and". For subobjects F and
G one has

(F ∧G)e =df Fe ∩Ge. (6)

Similarly, the disjunction F∨G models the operation "or" and is defined as
follows:

(F ∨G)e =df Fe ∪Ge. (7)

For any causal arrow e1 Ã e2 the maps Fe1e2
and Ge1e2

are set inclusions
(this follows from the corresponding (5)-type commutative diagrams, where
the horizontal arrows are inclusions). Therefor, the maps

(F ∧G)e1e2
: (F ∧G)e2

→ (F ∧G)e1
(8)

and
(F ∨G)e1e2

: (F ∨G)e2
→ (F ∨G)e1

. (9)

are set inclusions as well.
The binary operation F⇒ G models logical implication:

(F⇒ G)e =df {w ∈ W : ∀ e′ Ã e (w ∈ Fe′) ⇒ (w ∈ Ge′)}. (10)

Here ⇒ in lhs means the binary operation on the functors F and G, the
same symbol in rhs stands for the ordinary logical connection "if..., then...".
It is easy to see that for any causal arrow e1 Ã e2 the set (F ⇒ G)e2

is a
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subset in (F⇒ G)e1
. Therefore, the functorial image of the causal arrow is

the set inclusion:

(F⇒ G)e1e2
: (F⇒ G)e2

→ (F⇒ G)e1
. (11)

The implication operation let one define the unary operation of negation
¬ in the set of subfunctors of Glob. To this end one need the zero subfunctor
∅. It assigns the empty set to any event. Let

¬F =df (F⇒ ∅). (12)

From this definition and (10) follows

(¬F)e = {w ∈ W : ∀ e′ Ã e (w /∈ Fe′)}. (13)

The intersection Fe ∩ (¬F)e is evidently the empty set. So

F ∧ (¬F) = ∅. (14)

In the general case
F ∨ (¬F) 6= Glob. (15)

If it were the place of exact equality in the last expression, one would be free
to identify F and ¬¬F. But there is only a weaker statement that F is a
subfunctor of ¬¬F:

Fe ⊆ (¬¬F)e. (16)

Really, due to (13), we have

(¬¬F)e = {w ∈ W : ∀ e′ Ã e ∃ e′′ Ã e′ (w ∈ Fe′′)}. (17)

Because of Fe ⊆ Fe′′, taking place as soon as e′′ Ã e, the expression (16)
follows. The reverse inclusion (¬¬F)e в Fe is generally incorrect, then Fe (
(¬¬F)e. according to (14), (¬F)e∩(¬¬F)e = ∅. Consequently, (¬F)e∪(F)e

is a proper subset of (¬F)e ∪ (¬¬F)e which, in its turn, is a subset of W .
Therefore, (¬F) ∨ F is a proper subfunctor in Glob.

Expression (15) points the principe of excluded middle to be not fulfilled
in the logic of subobjects in Glob (the presheaf Glob plays the role of
identically true proposition). This is a generic property of topoi, other then
Set [5]. The logic is intuitionistic.

As it is pointed in [2], some important properties of the causal set C are
reflected in the structure of ¬Past, viz ¬Past = ∅ provided C is a lattice
(here the functor ∅ along with Past, is the object of category SetC and does
not coincide with contravariant counterpart). This follows from the definition

(¬Past)e = {e′ ∈ C : ∀e Ã e′′(e′ /∈ Paste′′)}. (18)
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We see that if any pair of events has an upper bound, the set (¬Past)e is
empty. Reformulating this observation within our approach aimed at branch-
ing properties of C, we arrive at the following

Proposition 3.1. The subject of the present work (the branching of space-
time) is non-trivial iff the functor ¬Past from [2] is non-empty.

.

As it has been pointed out, in our case Loc is an analog of Past. Conse-
quently, one may expect the structure of Loc reflects some important prop-
erties of C and the set of worlds. Due to (13) we get:

(¬Loc)e = {w ∈ W : ∀ e′ Ã e (e′ /∈ w)}. (19)

It is easy to verify that

(¬Loc = ∅) ⇔ (∀e ∈ C ∀w ∈ W Paste ∩ w 6= ∅). (20)

So, we have

Proposition 3.2. The emptiness of ¬Loc is equivalent to non-empty inter-
section of any Belnap world with the past of any event.

.

Particularly, this is the case of C containing the initial event ein ("Big
Bang"), such that ein Ã e for any event e.

4 Subobject classifier

In SetC
op, as well as in each topos, there is a subobject classifier for any

object. Intuitively, the subobject classifier delivers generalized truth values
for a set of propositions. This can be illustrated by application of the general
construction [5] in our setting.

Let us consider the set MorC(·, e) of causal arrows ending in e. Special
subsets called sieves on e are of importance. Any sieve S ⊆ MorC(·, e) is
closed in the following sense: if (e′ Ã e) ∈ S, and there is a causal arrow
e′′ Ã e′, then (e′′ Ã e) ∈ S. The maximal sieve on e is the very set
MorC(·, e). Its empty subset is the minimal sieve.

It is worth to introduce the set

Ωe =df {S : S – sieve on e}. (21)
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For any causal arrow e1 Ã e2 there is a map

Ωe1e2
: Ωe2

→ Ωe1
(22)

by the following rule: given the sieve S on e2, one should consider

Ωe1e2
(S) =df {(e Ã e1) ∈ MorC(·, e1) : (e Ã e2) ∈ S} (23)

as its image in Ωe1
. Expressions (21) – (23) let us define the contravariant

functor Ω from C to Set.
For any subobject F from Glob with the corresponding inclusion

[ιF] : F → Glob (24)

consider the following maps

[χF]e : W → Ωe, (25)

which let assign a sieve on e to any Belnap world:

[χF]e(w) =df {(e′ Ã e) ∈ MorC(·, e) : w ∈ Fe′}. (26)

It is easy to see that this is really a sieve: if a causal pair e′ Ã e belongs to
rhs of (26) and there is an arrow e′′ Ã e′, then w ∈ Fe′′ because Fe′ ⊆ Fe′′

and, consequently, e′′ Ã e belongs to rhs of (26) as well.
The fact is of importance that the maps (25) (defined for all events) make

the diagram

W
[χF]e2−−−→ Ωe2yidW

yΩe1e2

W
[χF]e1−−−→ Ωe1

,

(27)

commutative for any arrow e1 Ã e2. Therefore, [χF]e can be considered as
components of the natural transformation

[χF] : Glob → Ω. (28)

It follows from (26) that if w ∈ Fe, then [χF]e(w) = MorC(·, e). Oppo-
sitely, if the last equality is fulfilled then from e Ã e ∈ MorC(·, e) one has
w ∈ Fe. We see that [χF]e maps all the worlds from Fe and only these worlds
to the maximal sieve on e. This makes the following diagram commutative

F
[ιF]−−→ Glob

y[!F]
y[χF]

1
>−−→ Ω

(29)
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Here the functor 1 assigns the fixed one-element set {0} to any event from C
and the natural transformation components [!F]e are the only possible maps
from Fe to {0}. The natural transformation > (truth) has the components
>e : {0} → Ωe such that >e(0) = MorC(·, e) is the maximal sieve on e. F
along with the natural transformations [!F] and [ιF] are the pull-back of the

diagram Glob
[χF]−→ Ω

>←− 1 [5].
As has been said, the presheaf Loc is the most simple and important sub-

object of Glob. To its inclusion in Glob (4), the following natural transfor-
mation corresponds

[χLoc] : Glob → Ω, (30)

so that
[χLoc]e(w) =df {(e′ Ã e) ∈ MorC(·, e) : e′ ∈ w}. (31)

The sieve on e defined by rhs of this expression, is the generalized truth value
of an e-localized observer being living or having been lived in the world w.
If the event e pertains to the world w, then this is the maximal sieve on e

– the maximal truth value. Oppositely, if Paste ∩ w = ∅, the rhs of (31)
is the minimal (empty) sieve – the complete false. Intermediate truth values
correspond to situations when only part of events from Paste pertains to w.
The truth value depends evidently on e, i.e. on the place and moment of
assertion. In a similar manner for any subfunctor F from Glob the sieve
defined by the map (26), is the local (from the view-point of an observer
in e) truth value of the proposition «w is an element of F». Note that we
can look at assigning of truth values from a slightly another point. We can
locally assign a sieve on e to any subfunctor F from Glob:

[SF]e =df {(e′ Ã e) ∈ MorC(·, e) : Fe′ 6= ∅}. (32)

In this setting the local truth value (31) is identical to [Sw∧Loc]e. Here the
functor w appears such that we = {w} and all causal arrows are mapped
onto identity of this one-element set.

The usefulness of the last notion let one assign a local truth-value sieve to
assertions concerning space-time events without any reference to particular
Belnap world. For example, from the view-point of an observer in e the
assertion that «the event e0 takes place»should intuitively be associated with
the following sieve:

{(e′ Ã e) ∈ MorC(·, e) : Loce′ ∩ Loce0
6= ∅}. (33)

One can note that this sieve is yielded by (32) for the presheaf Loc∧Loce0
,

where Loce0
is the constant presheaf, so that [Loce0

]e = Loce0
for any e. It
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is easy to see that the sieve (33) is maximal on e provided e0 is compatible
with e. On the contrary, (33) is the empty sieve if any event from Paste is
incompatible with e0. The truth value in e is intermediate if the considered
assertion is absolutely true in only part (not all) of events from Paste. In
particular, this assertion is not completely false in any event if ¬Loc = ∅,
since in this case any world from Loce0

has non-empty intersection with the
past of any other event. It is worth to note that the truth value of similar
assertion from [2] is given by a co-sieve on e – by the set of all causal arrows
from e to all common consequences of e and e0. There last assertion states
that «some consequence of the event e0 will sooner or later be fixed in the
memory of an e-localized observer». Meanwhile, this statement may be not
absolutely true even if the sieve (33) is maximal.

5 Conclusion

Resuming, we see that the central object of our approach, the presheaf
Glob, is made of Belnap’s worlds – the main elements of branching space-
time C considered as a partly-ordered set. The model of Heyting-value logic is
realized on the set of subobjects of Glob. The known construction of subob-
ject classifier let one assign to propositions the generalized truth values from
the view-point of a local observer. The similarities can be traced between
our approach and that of the work [2] which also uses the basis of topos
theory. Nevertheless, there are significant differences. Not only events of
space-time are considered but also their special collections, called Belnap’s
worlds. Because of this the emptiness of the presheaf ¬Loc, as has been
show, is equivalent to non-trivial relation between this two types of entities.

As a further development of the present approach we are going to present
the categorial construction of local orthologics. This let us to make a step
towards introducing quantum-like structures in the framework of branching
space-time and, in perspective, towards a new line of reconciliation of classi-
cal and quantum conceptions.
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