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Abstract. We suggest quantum generalization of the method of causal analysis used before only for the classical va-

riables. The causality parameters for the series of examples of two-qubit entangled states are computed. The results are 

compared with the concurrence and degree of mixedness of the states. The role of state asymmetry in quantum informa-

tion transfer is shown. For the qubits under nonuniformity external magnetic field the nontrivial role of this nonuniformi-

ty for subsystem causal connection has been studied. At last quantum causal analysis helps to understand Cramer prin-

ciple of weak causality which admits extraction of information from the future without the classical paradoxes. 
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I. INTRODUCTION 

In spite of the fact, that principle of causality is widely used in physics, it does not mean more than retardation of 

the effect relative to the cause. However the retardation is necessary but not sufficient condition of the causal con-

nection (“Post hoc non est propter hoc”). But what is a cause and what is an effect remains formally indefinite. 

Meanwhile in the simple situations we usually well realize what is a cause and what is an effect, not measuring a 

retardation, but only implicating it (e.g. without any measurement of the retardation, it is obvious causal-effect rela-

tion of the current in the lamp and photocell circuits). In the complicated situations, in the systems with feedbacks, 

usual intuitive understanding of causality may lead to the confusions, and hence the desirability of its formalization 

is obvious. The fact that in the simple situation location of the causes and effects is clear without retardation measur-

ing indicates that these conceptions are asymmetrical in themselves. The problem is to define this asymmetry for-

mally and not invoking the time relation, which has to be introduced after the definition as an axiom. From the solu-

tion of this problem originally directed to formalization of Kozyrev’s causal mechanics [1], the method of causal 

analysis was born [2], turned out to be useful in various classical applications (e.g. [3-17]). It was found fruitful in 

the construction of the models of complicated systems with feedbacks by experimental data, as well as in the estima-

tion of the influence of noise-forming impacts in the real open systems. 

This work is devoted to development of analogous approach to quantum mechanics, where solving of the similar 

problems seems no less burning. This is especially true in regard to quantum nonlocality, which since its discovery 

has been attracting attention above of all by unusualness of quantum correlations from the viewpoint of principle of 

causality. It is assumed that quantum correlations realize instantaneously, but since for the communication purposes 

one has to use an ancillary classical channel, the violation of causality becomes experimentally unverifiable. The 

implementation of causal analysis has to give the possibility to investigate this situation by the strict and universal 

way. At last the implementation of causal analysis is burning for solving of the concrete questions of quantum in-

formation (the most neatly formulated in [18]) concerning peculiarities of behavior of the asymmetrical entangled 

states. 

In Sec. II the short review of the kernel of classical causal analysis formalism is presented. In Sec. III the exten-

sion of causal analysis to the quantum variables is considered. In Sec. IV application of causal analysis is demon-

strated to the symmetrical states, where causality is absent, but nevertheless the quantitative characteristics of the 

mixed states can be obtained. Sec. V is dedicated to the analysis of asymmetrical mixed states examples of increas-

ing complexity, beginning with the illustrative obtaining of causality measure and ending with the nontrivial conclu-

sions about causal connection nature depending on the external magnetic field and temperature. The general results 

are summarized in Sec. VI. 



II CLASSICAL CAUSAL ANALYSIS 

Consider the classical variables A and B describing the respective subsystems of the bipartite system AB, their 

Shannon marginal and conditional entropies: 
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where ( ),  ( )j kP A P B  are the probabilities of j -th ( k -th) levels of A  and B  respectively; ( | ),  ( | )j k k jP A B P B A  

are the respective conditional probabilities. Define the following parameters: the marginal   and conditional   

asymmetries: 
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and the independence functions: 
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Meaning of the independence functions is enough transparent: at | 1B Ai  , B is independent of A  , at | 0B Ai  , B  

is one-valued function of A . In other words, the values 1– i  determine the unilateral dependences of the variables. 

The direct and inversed independences must coincide only in the limiting case: | |1 1B A A Bi i   . 

Next introduce the causality function  : 
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The name is derived from the particular values of  . 0  : B  is the one-valued function of A , but not the reverse. 

It is possible to interpret that as the utmost irreversible process A B . 1  : A  and B  to the same extent depend 

on one another, that is naturally to identify with absence of causality.    : A  is one –valued function of B , but 

not the reverse. It is possible to interpret that is the utmost irreversible process B A . 

Consider the space of parameters |,  ,  B Ai   ( /    is equivalent to (5)) displayed in Fig.1. In this space it is 

possible to obtain the classification of any type of dependence of B  on A . Every type is imaged by a point. Analyz-

ing the limiting cases and using the reversibility of information: 
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FIGURE 1. Classical entropic diagram (IC is normal causality, IIC is inversed causality, dotted line is the B -constant line, thick 

solid line is the one-valued function line, fine dashed line is the independence line, thick dashed line is the adiabat, circle is the 

mutually one-valued function point). 

 

it is easily to prove, that the forbidden regions are: (i) the subspace 1, 1   ; (ii) the subspace 1, 1   ; (iii) 

the plane 1  except the line of intersection with the plane 1  ; (iv) the plane 1   except the line of intersec-

tion with the plane 1  and except the line of intersection with the plane 
| 0B Ai  ; (v) the plane 0  except the 

axis segment  0,1  and axis 
|B Ai ; (vi) the plane 0  except the axis 

|B Ai ; (vii) the plane 
| 0B Ai   except the line 

1  and axis segment  0,1 ; (viii) the plane | 1B Ai  ; except the line 1  ; (ix) the plane 1  , except the axis 

|B Ai , line | 1B Ai   and line 1   . 

In the allowed space it is possible to separate out, on parameter meaning grounds, the following regions: 

- Subspace of normal causality: 1,  1,  1     . 

- Subspace of inversed causality: 1,  1,  1     . 

- B -constant line: B const  independently of A . 

- One-valued function line: | 0,  0, 0 1B Ai      . Here ( | ) 0S B A  , i.e. B  is fully determined by A , but not 

reverse. 

- Independence line: | 1,  1B Ai   . 

- Mutually one-valued function point: ( | 0, 1B Ai     ). Here ( | ) ( | ) 0S B A S A B  . 

- Adiabat: 1   , that corresponds to the isentropic process.  

It is sufficiently for the formal definition of classical causality.  

Definition 1. The cause A  and the effect B  are variables for which 1  . 

Analyzing meaning of   it is not difficult to see that our definition includes usual intuitive understanding of cau-

sality (at least with an eye physicist’s intuition). Indeed, if we say that A  is the cause and B  is the effect, we keep 

in mind fully or partly determined dependence of B  on A , such that inversed dependence is absent. Our definition 

allows refining: the inversed dependence is less than direct one and how much. The causeless functional and statis-

tical dependences are also known. We neatly fix this class: 1  . If, having studied statistics of the arbitrary de-

noted variables A  and B , we find 1  , it simply means that B  is the cause and A  is the effect. Besides full for-

mality, our definition has an obvious advantage of the quantitative measure over common used the qualitative one. 

On theoretical and multiplicity of experimental examples of the classical problems (e.g. [3-12]) it had been shown 

that such formal definition of causality did not contradict its intuitive understanding in the simple situations and 

could be used in the complicated ones. 



Our definition allows formulation of the axiom of classical causality as follows: 

 

 1 0,  1 0,  1 0,               (7) 

 

where τ is time shift of B  relative to A . 

Note, that 1 1,  1 1         , (the reversed is wrong, that is why   can not be used for the definition 

of causality). This necessary condition is a manifestation of 7-th Shannon theorem [19] on decrease of the entropies 

from a channel input ( )A B  to its output ( )B A . 

Consider an elementary cause-effect link from information exchange standpoint. According to the theorem about 

noisy channel capacity, the upper limit of information reception rate in B  from A  is:  
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where t  is duration of an elementary signal, the numerator is maximized by variation of the A  distributions. Re-

placing the rate (8) by the lower limit of time and using (4), we have: 
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In a like manner for the reversed transfer: 
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By the condition 
| |1 1 1B A A B A B B Ai i t t         . The finite difference of times (10) and (9) means that in 

any time lapse the effect obtains from the cause more information than the cause does from the effect. Information 

excess in the effect means the irreversibility of information flow. Than time of information excess reception t  is: 
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Supposing that the subsystem A and B are separated by some finite effective distance ,r  one can determine the 

linear velocity of irreversible information flow 
2 /c r t    (the notation follows the tradition of Ref. [1], where 

originally, although in less rigorous terms, the course of time pseudoscalar 2c  of the same meaning was introduced): 
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where /k r t  . It is easy to see that the sign of 2c  is mutually one-valued related with the value of   relative to 

1: 

 

 2 2 21 0,  1 0,  1 ,c c c            (13) 

 

therefore it is possible to replace   by 2c  in the causality definition and axiom. 

The causal analysis apparatus has been generalized to the causal network in the multipartite system [7]. The in-

fluence of the different kinds of noise-forming impacts from the non-controlled environment on all the parameters 

( | |, , , ,B A A Bi i   ), the possibilities of other classical entropy definitions different from Shannon one as well as the 



foliated spaces of the probability definition have been analyzed [12]. The method has been tested on the problems of 

classical electrodynamics [3-6] and on data of various classical experiments (e.g. [4-12]). 

III QUANTUM QAUSAL ANALYSIS 

For the quantum variables von Neumann entropy is used. We have instead of Eqs. (1) and (2): 

 

 
2 2( ) Tr log ,  ( ) Tr log ,A A B BS A S B        (14) 
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where 
2Tr ,  Tr , ( ) Tr logA B AB B A AB AB ABS AB         . Note, that although the conditional entropies can be in 

principle directly calculated through the conditional entropies by analogy with Eqs. (2) [20], practically it is simple 

to calculate them indirectly according to Eqs. (15). 

For the entangled states the conditional entropies can be negative [20, 21]. Therefore 

,  1 1,  i        . In particular, for the bipartite states from Schmidt decomposition it is follows 

| |1,  1, 1, 1.B A A Bi i         The entropic diagram is extended (Fig. 2). Besides the two classical subspaces C 

the four quantum ones Q are allowed: 

I C   0 1,       0 1,      
|0 1,B Ai          0 1,          

2 0;c   

II C  1 ,       1 ,      
|0 1,B Ai         1 ,   ,      

2 0;c   

IQ    0 1,        1 ,    
|1 0,B Ai          1 ,          

2 0;c   

IIQ   1 ,       0 1,    
|1 0,B Ai          0 1,          

2 0;c   

IIIQ  0 1,    0,     
|1 0,B Ai      0,           

2 0;c   

IVQ  1 ,   0,        
|0 1,B Ai    0,           

2 0.c   

 

 
FIGURE 2. Quantum entropic diagram. 

 



 
FIGURE 3. The allowed subspaces in the sections 

|B Ai const : (a) the subspaces IC, IIC and IVQ; (b) the subspaces IQ, IIQ 

and IIIQ. 

 

However in the 3D diagram of Fig.2 it is difficult to show the demarcation of the allowed subspaces. For their 

indication invoke the fact that the independence function 
|B Ai  can be represented as follows: 

 

 |

( 1)

( 1)
B Ai

 

 





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In the subspaces IC, IIC and IVQ |0 1B Ai  , that according to Eq. (16), brings to the system of two inequalities 

with respect to ,  . Their solutions in the form of sections |B Ai const are presented in Fig.3a. The allowed sub-

spaces are adjacent to the border planes. In the subspaces IQ, IIQ and IVQ |1 0B Ai   . The solutions of corres-

ponding couple of the inequalities are presented in Fig. 3b. The allowed subspaces are separated from the part of 

border planes by the hyperbolic surfaces. 

At the quantum level the value of   is insufficient for distinguishing the cause and effect. But by reference to 

correspondence between 
2c  and   in both the classical subspaces and necessary condition of the 7-th Shannon theo-

rem obeying in all the six subspaces: 
2 0 1c    , 

2 0 1c     it is possible to give the definition of causality 

appropriate for the quantum variables. 

Definition 2: The cause A  and the effect B  are the states for which 
2 0c  . 

Then, introducing the demand of the effect retardation  , we can formulate the axiom of strong causality, em-

bracing local and nonlocal correlations, as follows: 

 

 2 2 20 0, 0 0,| | 0.c c c           (17) 

 

Notice, that nonlocal correlations are often treated as instantaneous and causeless ones. Our approach includes 

such treatment, but only as a particular case. 

The axiom (17) is the principle namely of strong causality. Cramer was the first to distinguish the principles of 

strong and weak causality [22]. The strong causality corresponds to the usual condition of retardation of the effect 

relative to the cause. Without this axiom we have the weak causality. The weak causality corresponds only to non-

local correlations and implies a possibility of information transmission in reverse time, but only related with un-

known states (hence “the telegraph to the past” is impossible). 



Eqs. (8) – (12) remain true by virtue of the parallelism of classical and quantum information theory [21]. A justi-

fied in Ref. [23] interpretation of entanglement of a quantum system as the resource serving for information transfer 

through it, gives them the additional physical meaning. Specifically in Ref. [23] it has been proven that negative 

conditional entropy is “an amount of information which can be transmitted through < the subsystems>1 and 2 from a 

system interacting with 1 to another system interacting with 2. The transmission medium is quantum entanglement 

between 1 and 2.” Causality characterized by c2 value reflects the asymmetry of this process (the greater causality is 

expressed by the less 
2| |c ). 

But though defined by Eq. (12) 
2c  with accuracy to the coefficient k  is of great interest by itself, it is desirable 

to show the way of its full determination for the natural processes. For this there is no remain t  to be duration of 

“an elementary signal”, that is pertinent only for a technical channel. Since t  in any case plays a role of some ele-

mentary time it is natural to suppose it, according to Ref. [24] to be time of brachistochrone evolution. In the case of 

time independent Hamiltonian this time is easily expressed explicitly:  

 

 
2

t





  (18) 

 

where 2  is the difference between the largest and smallest eigenvalues of the Hamiltonian and  is the length of 

geodesic (according to Fabini-Study metric) connecting the initial and final states. If they are orthogonal,   . In 

realistic Hamiltonian   depends on distance r  and k  becomes definite. It is readily shown [2] that for the sim-

plest Coulomb interaction 2 /k e , that corresponds to Kozyrev order estimation of с2 obtained from the semiclas-

sical reasoning.  

To keep the examples described bellow from becoming too involved; we shall restrict ourselves by calculations 

of 
2c   with accuracy to 1k  . Only in the last example we shall demonstrate the more precise estimation with regard 

to t , which variable dependent on eigenvalues of Hamiltonian (remaining 1r  ). 

IV. SYMMETRIC STATES 

By the symmetric two-partite states are meant the states with equal subsystem entropies: ( ) ( )S A A B , 

1,      
2| |c  . The causality is absent (adiabatic state connection). However the value | |B A A Bi i  is finite 

and can be related to the mixedness measures 2Tr AB  or ( )S AB  and to the standard entanglement measure-

concurrence C [25]: 

 

 1 2 3 4max( ,0)C         (19) 

 

where 
i  are eigenvalues of the matrix  . Spin-flip matrix   is defined as: 

 

 ( ) ( )y y y y         (20) 

 

We snow below that employment of causal analysis make sense, naturally, only for the mixed states. At the be-

ginning we consider the elementary systems, when mixedness emerges as a result of extraction of the two subsys-

tems from a three-partite pure state, thereupon – more containable situations, when the mixedness is a result of inte-

raction with a non-controlled environment. Since such interaction leads to decoherence, analysis of these situation 

we shall begin with the basic mechanisms of decoherence – depolarization and dephasing (dissipation, which may 

lead to the asymmetry is considered in Sec. V.A). Next we consider typical mixed states in their initial and asymp-

totic species (after long-run dissipation). 

A. Pure States 

The entropic symmetry is evident from Schmidt decomposition. Consider the arbitrary pure states: 

 



 | | 00 |11 ,       (21) 

 

or 

 | | 01 |10 ,       (22) 

 

where 2 2| | | | 1   . Since the state is pure 2Tr 1AB  , ( ) 0S AB  , concurrence C  varies according to ratio of 

 and  . But at any nonzero  and   the independence function is constant: 
| 1B Ai   . Therefore for the pure 

states the causal analysis is of no interest. 

B. GHZ State 

It is known, that GHZ state 

 

 
1

| (| 000 |111 )
2

      (23) 

 

is marked by that in spite of the maximal entanglement of three particles ( ABC ), the pairwise entanglement is ab-

sent: 0C  . The two-partite state is mixed: 2 1
Tr

2
AB  , ( ) 1S AB  . Therewith 

| 0B Ai  . The entanglement is absent 

but the particles A  and B  are maximally classically correlated. 

C. W-State 

 
1

| (| 001 | 010 |100 )
3

W        (24) 

 

Similar to GHZ state, W-state is entangled three-partite state, but the pairwise concurrence 
2

3
C   (moreover, (24) 

and in general N -partite W-state represents the case of arranged in pairs and equal entanglement of the all N  par-

ticles [26]). The mixedness of the two-partite subsystem is somewhat weaker than for GHZ: 2 5

9
ABTr  , 

2 2

1 1 2 2
( ) log log 0.918

3 3 3 3
S AB     . However, likewith GHZ state: 

| 0B Ai  . 

D. Depolarization 

Depolarization reduces to the following transformation [27, 28]: 

 

 

| 0 0 | (1 ) | 0 0 | ,
2

|1 1| (1 ) |1 1| ,
2

|1 0 | (1 ) |1 0 |,

| 0 1| (1 ) | 0 1|,

I
p p

I
p p

p

p

    

    

   

   

 (25) 

 

where 0 1p   is decoherence degree. Take the singlet for the initial state: 

 
1

| (| 01 |10 ),
2

      (26) 



and let us assume that only the second particle ( B ) is depolarized. The depolarized density is: 

 

 

1
( | 00 00 | (1 ) | 01 01| |11 11|

2 2 2 2

(1 ) |10 10 | (1 ) | 01 10 | (1 ) |10 01|)
2

AB

p p p

p
p p

        

       

 (27) 

 

In spite of the fact that only one particle is depolarized, both the reduced densities are equal to each other, i.e. the 

system is symmetric: 

 

 

 
1

(| 0 0 | |1 1| .
2

A B       (28) 

 

On finding the eigenvalues, we obtain: 

 

 2 2

3 3 3
( ) log (1 ) log (1 ),

4 4 4 4

p p p p
S AB       (29) 

 

 ( ) ( ) 1.S A S B   (30) 

 

The independence function is: 

 

 | ( ) 1.B Ai S AB   (31) 

 

The concurrence is: 

 

 
3

max(1 ,0).
2

p
C    (32) 

 

The dependence of |B Ai , C , 2

ABTr  on p  is shown in Fig.4. It is seen that |B Ai  varies with decoherence degree in the 

full range from 1  at 0p   to 1  at 1p   (full depolarization), when correlation of the subsystems fully disap-

pears. The independence increases according to the increase of mixedness in both its measures (exactly proportional 

for ( )S AB ) and to the decrease of concurrence. It is the most interesting that there is an interval 
1 2

4 3
p  , where 

| 0B Ai   and 0C  . On this interval the system is in an entropic sense is classical but nevertheless entangled. 



 
FIGURE 4. Dependence of |B Ai  (thick solid line), C  (fine solid line), and 

2Tr AB  (dashed line) on degree of depolarization p  

of the state (26). 

E. Dephasing 

The transformation is [27,28]: 

 

 

 
|1 0 | (1 ) |1 0 |,

| 0 1| (1 ) | 0 1| .

p

p

   

   
 (33) 

 

The state (26) after dephasing of the particle B  is: 

 

 
1

(| 01 01| (1 ) | 01 10 | (1 ) |10 01| |10 10 |).
2

AB p p            (34) 

 

Eqs. (28), (30) and (31) are true again, but 

 

 2 2( ) (1 ) log (1 ) log ,
2 2 2 2

p p p p
S AB       (35) 

 

 1 .C p   (36) 

 

Therefore by full dephasing | 0B Ai  , i.e. the subsystems remain classically maximally correlated. By partial dephas-

ing C  and negative |B Ai  are the characteristics of entanglement on equal terms (Fig.5). 



 
FIGURE 5. Dependence of |B Ai  (thick solid line), C  (fine solid line) and 

2Tr AB  (dashed line) on degree of dephasing p  of the 

state (26). 

F. Bell-Diagonal States 

Initial Bell-diagonal states are: 

 

 
1 2 3 4| | | | | | | |AB p p p p                     (37) 

 

where 

 

 
1 1

| (| 00 |11 ),  | (|10 | 01 )
2 2

            (38) 

 

Eqs. (28), (30) and (31) are true again, but 

 

 
4

2

1

( ) logi i

i

S AB p p


   (39) 

 

 max(2max{ } 1,0)iC p   (40) 

 

Behavior of |B Ai , C  and 2

ABTr  in deciding on 
4p p , 

1 2 3 (1 ) / 3p p p p     is shown in Fig. 6. It is seen that 

|B Ai  reflects the mixedness achieving 1 at equality of the all 
ip . But more important, that there is an interval 

0.5 0.81p  , where | 0B Ai   and 0C  . On this interval the system is entangled in spite of the entropic classic-

ness. 



 
FIGURE 6. Dependence of |B Ai  (thick solid line), C  (fine solid line) and 

2Tr AB  (dashed line) on 
4p p  of initial Bell-

diagonal states (37). 

 

Now consider dissipation of the states (37) at the presence of a common bath. It is known that against before ac-

cepted views, dissipation may not reduce to decoherence, but on the contrary, may play a constructive role in entan-

glement generation [29-36]. Following Ref. [34], suppose that the qubits represent the two-level atoms separated by 

a distance small compared to the radiation wavelength. Dissipation occurs at the expense of spontaneous emission of 

the photons, which have a substantial probability to be absorbed by the other atom. In Ref. [34] the system dynamic 

equation is solved and the asymptotic solutions t  are analyzed in detail. In particular the asymptotic density 

matrix at the initial one (37) is: 

 

 

4 4

4 4

4

0 0 0 0

0 0
2 2

0 0
2 2

0 0 0 1

as

AB

p p

p p

p



 
 
 
 


 

 
 
  

 (41) 

 

Hence 

 4 2 4 4 2 4( ) log (1 )log (1 )S AB p p p p      (42) 

 

 4 4 4 4
2 2( ) ( ) log (1 ) log (1 )

2 2 2 2

p p p p
S A S B       (43) 

 

 |

( )
1

( )
B A

S AB
i

S A
   (44) 

 

 
4C p  (45) 

 

The constructive role of dissipation is that even the initial state was separable ( 0C  ) the asymptotic one is entan-

gled in the all range of finite 
4p . Figure 7 demonstrates that in this case the independence function does not reflect  



 
FIGURE 7. Dependence of |B Ai  (thick solid line), C  (fine solid line) and 

2Tr AB  (dashed line) on 
4p p  of asymptotic Bell-

diagonal states (41). 

 

the mixedness, but does reflect the concurrence. Therewith 
| 1B Ai  , i.e. the system is correlated at almost any 

4p  

(
|max 1B Ai   is achieved at 

4 0p  ). On the interval 
40 0.67p   0BAi   (classical) at rather strong entanglement. 

G. Werner States 

The initial Werner states 

 

 ( 1) | |
4

AB

I
p p        (46) 

 

represent a depolarized triplet, for which as well as for the singlet, the expressions (28) – (32) and Fig. 4 are true. 

Consider the result of described in above subsection dissipation process of the states (46). According to Ref. [34] 

in the asymptotic limit t  : 












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

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
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











4
1000

0
88

0

0
88

0

0000

p

pp

pp

as

AB      (47) 

 

Hence: 

 

 2 2( ) log (1 ) log (1 )
4 4 4 4

p p p p
S AB       (48) 

 

 2 2( ) ( ) log (1 ) log (1 )
8 8 8 8

p p p p
S A S B       (49) 

 



 
FIGURE 8. Dependence of |B Ai  (thick solid line), C  (fine solid line) and 

2Tr AB  (dashed line) on 
4p p  of asymptotic Wern-

er states (47). 
 

 
4

p
C   (50) 

 

Figure 8 shows that asymptotic Werner states are radically differ from the initial ones: They are not only entangled 

at any 0p  , but the concurrence increases with the increase of p  – the smaller entangled initial state the greater 

entangled dissipated one. Therewith |B Ai  is positive (classical) at any p  ( |max 1B Ai   at 0p  , |min 0.493B Ai   at 

1p  ). It is remarkable that the decrease of |B Ai  and the increase of C  are practically proportional to the increase of 

mixedness. 

H. Maximally Entangled Mixed States 

In Ref. [37] it is conjectured that at fixed 2Tr AB  the maximally entangled are the states: 

 

 

( ) 0 0
1 22

, 0,
0 1 2 ( ) 0 0 3 3

; ( ) .
0 0 0 0 2

, ,1
2 3

0 0 ( )
2
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h

h
h
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






 
    

        
            
 
 

 (51) 

 

Hence: 

 2 2 2( ) (1 2 ) log (1 2 ) ( ) log ( ) ( ) log ( )
2 2 2 2

S AB h h h h h h
   

           (52) 

 

 2 2( ) ( ) log (1 )log (1 )S A S B h h h h       (53) 

 

|B Ai  is determined by Eq. (44), the concurrence is  

 C   (54) 



 
FIGURE 9. Dependence of |B Ai  (thick solid line), C  (fine solid line) and 

2Tr AB  (dashed line) on   of initial maximally en-

tangled mixed states (51). 

 

The dependence of 
|B Ai , C , 2Tr AB  on   is shown in Fig. 9. 

|B Ai  changes from 0.725  at 0   to 1 , at 1  and 

its decrease as whole reflects the decrease of mixedness. Therewith on the interval 
2

0
3

   0BAi   at 0C   – the 

states are entangled in spite of the entropic classicness. 

 

According to solution of Ref. [34], the asymptotic result of dissipation of the state (51) is: 

 

0 0 0 0

1 1
0 (1 2 ) (1 2 ) 0

4 4

1 1
0 (1 2 ) (1 2 ) 0

4 4

1
0 0 0

2
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h h

h h

h



 
 
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 (55) 

 

Hence: 

 2 2

1 1 1 1
( ) ( ) log ( ) ( ) log ( )

2 2 2 2
S AB h h h h        (56) 

 

 2 2

1 1 3 3
( ) ( ) ( ) log ( ) ( ) log ( )

4 2 4 2 4 2 4 2

h h h h
S A S B         (57) 

 

|B Ai  is determined by Eq. (44), the concurrence is: 

 

 
1

(1 2 )
2

C h   (58) 

 

Figure 10 shows that dissipated maximally entangled mixed states are characterized by radically different depen-

dence of C  on  , hence at small   they are mere entangled than the initial ones. As this take place, as a result of 

dissipations the system has become in entropic terms classical |(0.571 1B Ai   at all  ). In contrast to the initial  



 
FIGURE 10. Dependence of |B Ai  (thick solid line), C  (fine solid line) and 

2Tr AB  (dashed line) on   of asymptotic maximally 

entangled mixed states (55). 

 

states the independence function varies inversely to the degree of mixedness. In the pure state limit 0  : 

( ) 0S AB  , 2Tr 1AB  , but also ( ) ( ) 0S A S B  , therefore 
| | 1B A A Bi i  . 

Qualitatively asymptotic maximally entangled mixed states are close to asymptotic Werner states by the relation 

of independence, concurrence and mixedness.  

V. ASYMMETRIC STATES 

In this section we consider the examples of asymmetric states, for which application of causal analysis is the 

most substanceble. The examples are considered in ascending order of nontriviality. In the computations of 
2c  we 

shall suppose 1k   until the last example, where we shall consider the variable k . Note, that in those examples we 

shall nowhere use the axiom of strong causality (17). Reverse time is allowed. 

A. Asymmetric Dissipation 

Consider the third possible way of decoherence that is dissipation by the same manner as in. Sec. IV. D and E: 

only one particle B  is dissipated. Therein lies dissimilarity from the symmetric dissipation considered in Sec. IV. E 

– H.  

The dissipation reduces to the following transformation [27, 28]: 

 

 

| 0 0 | | 0 0 |,

|1 1 | (1 ) |1 1 | | 0 0 |,

|1 0 | 1 |1 0 |,

| 0 1 | 1 | 0 1 | .

p p

p

p

  

     

   

   

 (59) 

 

The singlet (26) is taken as the initial state as well as in Sec. IV. D and E. The dissipated density is: 

 

 

1
[ | 00 00 | (1 ) | 01 01| 1 | 01 10 |

2

1 |10 01| |10 10 |].

AB p p p

p

         

   

 (60) 



The reduced densities are: 

 

 
1

(| 0 0 | |1 1|),
2

A      (61) 

 

  
1

(1 ) | 0 0 | (1 ) |1 1| .
2

B p p        (62) 

 

The entropies are: 

 

 2 2( ) log (1 ) log (1 ),
2 2 2 2

p p p p
S AB       (63) 

 

 ( ) 1.S A   (64) 

 

 2 2

1 1 1 1
( ) log log .

2 2 2 2

p p p p
S B

   
    (65) 

 

The independence functions are: 

 
| |

( ) 1
; ( ) ( ).

( )
B A A B

S AB
i i S AB S B

S B


    (66) 

 

The concurrence is: 

 1 .C p   (67) 

 

From Fig. 11 it is clear that dissipation differs from depolarization and dephasing by more values of C  in the all p  

range, while |B Ai  is negative everywhere similar to the dephasing case. But the main interest represents Fig. 12, 

where the measures of causality 
2c  and   are presented.  

2 0c  , therefore the particle A  is the cause and B  is the 

effect. It is in full agreement with the intuitive expectation – the irreversible flow of information is directed to the 

dissipating particle B . The decrease of 
2c  with the increase of p  also responds to intuitive expectation of amplifi-

cation of causal connection with the increase of dissipation. But employment of the classical measure   would lead 

at 
1

0
2

p   to the opposite conclusion about directionality of the causal connection, while at 
1

1
2

p     becomes 

classically meaningless. 

In the entropic diagram (Fig. 2) the states (60) correspond to subspaces IQ (at 
1

0
2

p  ) and IIIQ (at 

1
1

2
p  ). The transition between the subspaces does not break smoothness of 

2 ( )c p . 



 
FIGURE 11. Dependence of |B Ai  (thick solid line), C  (fine solid line), and 

2Tr AB  (dashed line) on degree of dissipation p  of 

the state (26). 

 
FIGURE 12. Dependence of 

2c  (solid line) and   (dashed line) on degree of dissipation p  of the state (26). 

B. One Particle is Entangled with Two Others. 

Consider the case when one particle A  is entangled equally and maximally with two others B  and C . It is the 

three-partite state [26]: 

 

 
1 1

| |100 (| 001 | 010 ).
22

        (68) 

 

Take the pair AB . The reduced densities are: 

 



 
1 1 1 1 1

00 00 |10 10 | |10 01| | 01 10 | | 01 01|,
4 2 42 2 2 2

AB           (69) 

 

 
1

(| 0 0 |1 1|),
2

A      (70) 

 

 
3 1

| 0 0 | |1 1| .
4 4

B      (71) 

 

The entropies are: 

 

 2 2

3 3 1 1
( ) ( ) log log 0.811,

4 4 4 4
S AB S B      (72) 

 

 ( ) 1.S A   (73) 

 

The independences are: 

 

 
| |0.233; 0.B A A Bi i    (74) 

 

The measures of causality are: 

 

 
2; 5.299.c     (75) 

 

The concurrence is: 

 

 
1

.
2

C   (76) 

 

According to the quantum measure 
2c  A  is the cause and B  is the effect, while the classical measure   is mea-

ningless (the subspace IIIQ in the entropic diagram). In the pair AC  the result is the same and thus A  is the com-

mon cause for B  and C . Classical intuition in this case would be powerless to distinguish the common cause from 

the common effect. 

Intuition gives only true, by virtue of the symmetry, answer about the absence of causal connection of B  and C . 

The similar mathematics for this couple give: | | 0.233B C C Bi i  , 1  , 
2| |c   , 

1

2
С  . The particles B  and C  

are entangled and classically correlated due to availability of the common cause. Note that the mixedness, according 

to both the measures in the pairs AB ( AC ) is less than in the pair BC : ( ) 0.811S AB  , 2 0.625ABTr  , ( ) 1S BC  , 

2 1
Tr

2
AB  . 

C. WRr-State 

In Refs. [38,39] the different three-partite states related by the symmetry transformations, the particular cases of 

which are GHZ and W-states, have been investigated. 

In particular the duplet has been obtained: 

 

 
1

| (| 001 | 010 2 |100 ).
6

WRr        (77) 

 



This state differs by the entanglement distribution from W-state considered in Sec. IV.C, for which 

1

3
AB AC BCC C C   , and the state considered in Sec. V.B, for which 

1

2
AB ACC C  , 

1

2
BCC  . For the state (77) 

2

3
AB ACC C  , 

1

3
BCC   [38,39], that is the pair BC  has entanglement twice smaller than two another pairs have.  

For the state (77): 

 

 
1

(4 |10 10 | 2 |10 01| 2 | 01 10 | | 01 01| | 00 00 |,
6

AB            (78) 

 

 2 2

1 1 5 5
( ) ( ) log log 0.651,

6 6 6 6
S AB S B      (79) 

 

 2 2

1 1 2 2
( ) log log 0.918,

3 3 3 3
S A      (80) 

 

 
| |0.412; 0,B A A Bi i    (81) 

 

 
2; 3.43.c     (82) 

 

The same is true for the pair AC . Therewith 2 2Tr Tr 0.722AB AC   . 

As in Sec. V.B A  is the cause for B  and C  and only the quantum measure of causality has a meaning (the sub-

space IIIQ in Fig. 2). The quantitative difference implies that according to both the measures of mixedness in the 

causal links of the state (77) it is less than in (68), and though the concurrence is less, the independence functions 

| | 0B A C Ai i   are lower, i.e. quantum correlations are stronger, and c2 is lower, i.e. causal connection is expressed 

stronger. 

For the particles B  and C  in the state (77) we have: ( ) 0.918S BC  , 2Tr 0.556BC  , 
| | 0,412B C C Bi i  , 1  , 

2| |c   , 
1

3
C  . As with the state (68), causality in the pair BC  is absent, and although the mixedness is lower, but 

the entanglement and classical ( | | 0B C C Bi i  ) correlations are weaker. 

D. Asymmetric “Quantum-Classical” States 

The question on the peculiarities of behavior of the asymmetric states was the first to set in Ref. [18], where the 

case of “quantum-classical” two-partite states was considered. The subsystem A  is called quantum if 

( ) ( )S A S AB , and classical – B  if ( ) ( )S B S AB . The strange fact has been discovered: the decoherence may go 

faster by interaction of the environment with the classical subsystem. This has been called in Ref. [18] anomalous 

entanglement decay. As a result a number of open questions about nontrivial behavior of the open systems have been 

set, among them on asymmetry in the transfer of quantum information with respect to its direction. 

In Rev. [18] asymmetric states were considered: 

 

 1 1 2 2| | (1 ) | |;0 1.AB q q q           (83) 

 

With normalized 2

1| | 00 1 |11a a       and 2

2| |10 1 | 01a a       with 0 1a  . From Eq. (83) it 

is seen that mixedness depends on q  only, while the concurrence – on q  and a . The expanded Eq. (83) is: 
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 (83a) 

 

Hence: 
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 2 22 (1 ) |1 2 | .C a a q    (88) 

 

Always ( ) ( )S A S AB , ( )S B  may be more as well as less than ( )S AB . According to definition of Ref. [18] the 

subsystem A  is almost always quantum, while the subsystem B  may be either quantum or classical. In Fig. 13 the 

dependences of 
|B Ai , C  and 2Tr AB  on q  and 2a  which have the expected appearance. Only the dependence of 

|B Ai  

on 2a  is nontrivial. That the |B Ai  is almost always negative (except of the case 
1

2
q  ) just reflects the fact that the 

subsystem A is almost always quantum. At the maximal mixedness, achieved at 
1

2
q  , the subsystem are not entan-

gled but classically maximally correlated (
| 0B Ai  ) at any 2a . 

The dependences of 
2c  and   on q  and 2a  are presented in Fig.14. The positive value of 

2c   shows that at al-

most all q  and 2a
 
 A  is the cause and B  is the effect. Causality disappears (

2c   ) only at 0q   or 1 (the pure 

states) and 
2 1

2
a   (the symmetric states). The direction of causal connection A B  clears up a conclusion of Ref. 

[18] about bigger fragility to decoherence of the classical subsystem B . Certainly the runoff quantum information 

occurs mainly in the effect B . 

The states correspond to the subspaces IQ and IIIQ (Fig. 2), accordingly, the classical measure of causality   in 

Fig. 14 shows either mistakenly opposite direction of causal connection or loses its meaning where   is negative. 

Classical causality is absent ( 1  ) at 2a q  and 2 1a q  . The negative values of   (subspace IIIQ) correspond 

to the positive values of the independence function |A Bi  or in other words, to the classicness of subsystem B  by the 

definition of Ref. [18]. But since
2 0c   is always positive we conclude that anomalous entanglement decay by Ref. 

[18] is not anomalous, because it is only a particular case of general and natural phenomenon of more quantum in-

formation runoff on the more dissipative subsystem. 

A nontrivial quantitative conclusion (which is impossible to make simply from appearance of the states (83) or 

(83a)) is that maximal mixed states 
1

2
q   correspond to the one-valued function line (Fig. 1). At any 2a  here 0   

(Fig. 14), that corresponds to the utmost irreversible transition A B . This one-valued dependence of B  on A  is 

achieved at zero concurrence (Fig. 13). Therewith 
2c  has any positive value depending on 2a . In other words, the  



 
FIGURE 13. Dependence of |B Ai  (thick solid lines), C  (fine solid lines), and 

2Tr AB  (dashed lines) (a) on q  and (b) on 
2a  of 

the asymmetric “quantum-classical” states (83). 

 

 
FIGURE 14. Dependence of 

2c  (solid lines) and   (dashed lines) (a) on q  and (b) on 
2a  of the asymmetric “quantum-

classical” states (83). 

 

case of the utmost strong classical causality can correspond to different degree of uniformly directed quantum cau-

sality – from the strongest one for the utmost asymmetry of the state ( 2 0a   or 2 1a  ) to its absence at the sym-

metry (
2 1

2
a  ). 

E. Thermal Entanglement under a Nonuniform External Magnetic Field 

It is generally believed that increase of the temperature, as well as the magnetic field, destroy entanglement. But 

recently [40] it has been discovered that nonuniform magnetic field, on the contrary, play a constructive role and 



entanglement is maintained at the high temperature as well as under the strong magnetic field. It has been found that 

just nonuniform magnetic field of opposite direction at the subsystem A  and B  has such decoherence suppression 

property. 

Consider, according to Ref. [40], thermal entanglement of the two qubits with spin 
1

2
 related by XY -Heisenberg 

interaction with the following Hamiltonian: 

 

 ( ) ,x x y y z z

A B A B A A B BH J S S S S B S B S     (89) 

 

where the spin operator / 2j jS   ( , ,j x y z ), J  is the strength of Heisenberg interaction, 
AB  and 

BB  are the 

external magnetic fields at the particles A  and B . The eigenvalues and eigenvectors of Hamiltonian (89) are: 

 

 | 00 ( ) | 00 ,A BH B B     (90) 

 

 |11 ( ) |11 ,A BH B B     

 

 | | ,H D        

 

where 
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N J





  
     

 
  

 

 2 2( ) .A BD B B J     

 

The density matrix of the thermal states is: 
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( )/
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 (91) 

 

where 

 

 
/

Tr ,BH kT
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In the next calculations we accept 1Bk J  . The state asymmetry is determined by n . 



From Eq. (91) follows: 
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 (92) 
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 (94) 

 

The independence functions are determined by the general formulae (87). The concurrence is: 

 

 
1

2 .
s

C
Z


  (95) 

 

For investigation of the nonuniform field impact, accept at the beginning 1T  , 5AB  , 5BB p . 

 

 
FIGURE 15. Dependence of (a) |B Ai  (thick solid line) and |A Bi  (fine solid line), (b) C  (solid line) and 

2Tr AB  (dashed line) on 

/B Ap B B  of the states (91) ( 1T  ). 

 



 
FIGURE 16. Dependence of (a, b) 

2c  (thick solid line) and 
2c  (fine solid line), and (c)   (dashed line) on /B Ap B B  of the 

states (91) ( 1T  ). 

 

The maximal mixedness both by max ( )S AB  derived from Eq. (92), and by 2minTr AB  (Fig. 15) is achieved at 

0.010p  . The concurrence in Fig. 15 demonstrates noted in Ref. [40] the most entanglement at oppositely directed 

fields at A  and B , but the maximum is achieved not at the exact antisymmetry ( 1p   ) as presumed in Ref. [40], 

but at 0.253p   . Note, that according to Eqs. (93) and (94) max ( )S A  ( 0.149p   ) is close to maxC , while 

max ( )S B  is close to 2minTr AB  ( 0.08p  ), therewith max 26.5   is observed at 0.176p  . The independence 

function |B Ai  in Fig. 15 demonstrates similarity neither with the mixedness nor with the concurrence. | 1B Ai   that 

is quantum correlation increases at deeply negative p , where C  decreases. At 0.54 0.5p    |B Ai  is classically 

positive in spite of 0C  . |max B Ai  that is the least correlation of the subsystem is observed at 0.379p  , where C  

is still finite. At big p  |B Ai  goes down at the expense of classical correlations under the parallel fields. The indepen-

dence function |A Bi  is also shown in Fig. 15. Although | 0A Bi   at 0p   there are no antisymmetry by p , |min A Bi  is 



observed at 1.115p   , while 
| 1A Bi   at big positive p . In the interval 0 0.5p   the states are entangled though 

classically correlated (the both i  are positive). Thus, the independence functions demonstrate nontrivial relation 

between quantum and classical correlations, which is impossible to reveal from consideration of the concurrence 

only. 

Consider the causal connection of the subsystems. In this case determine 
2c  not only at / 1k r t    in Eq. 

(12), but drawing on the eigenvalues of Hamiltonian (90), compute t  according to Eq. (18). Supposing now 

1r  , determine 
2 2 /c c t  . In Fig. 16 

2c , 2c and   are presented. The former two as convenience (to show their 

maxima) are presented at two different scales for the parallel and antiparallel fields. According to all the three meas-

ures causality is absent at 1p   , that is under equal parallel and antiparallel fields at A  and B . The interval 

( , 1)p    corresponds to the subspace IQ, ( 1,0.54]p   − IIQ, [ 0.54,0]p   – IVQ, (0,1)p  – IIC, (1, )p   – IC. Ac-

cording to both the quantum measures at | | 1p   A  is the cause, B  is the effect, and inversely at | | 1p  . In other 

words, the effect is always in the region of stronger field. It can be understood as stabilizing polarization of the qubit 

in the strong field, as a result of which the qubit becomes in more degree the runoff of information than the source. 

At directionality of causal connection A B  and | |p   causality is amplified: 
2 0c  , 

2 0c   . But at direc-

tionality B A  
2min | |c  and 

2min | |c  are not at 0p   as could be supposed intuitively, but at finite 0.364p   

for 
2c  and 0.266p   for 

2c . These values of p  are determined by the chosen temperature 1T  . Calculation 

shows that specific field ratio p  at which causality is strongest decreases as the temperature increases. The causality 

function   gives the right answer about directionality of causal connection only at 0p  . At last from Fig. 16 it is 

seen that there is no a qualitative difference between 
2c  and 

2c . 

Consider the temperature influence more closely. It can be expected that any correlations decrease as the temper-

ature increases. On the other hand, namely finite temperature leads to the mixing, which is a necessary condition of 

quantum causality. Indeed, as the temperature increases ( )S AB  increases, however the subsystem entropies increas-

es too, but by different manner, and one can expect nontrivial behavior of the entropic functions. 

From Fig. 17 it is seen that mixedness increases with the temperature, but the magnetic field at the subsystem B  

suppresses this temperature influence. The concurrence (Fig. 18) under antiparallel fields, in accordance with the 

main conclusion of Ref. [40] is maintained at the high temperature. However the most suppression of decoherence is 

achieved not in the antisymmetric case ( 1p   ), but under stronger field at B  ( 1.5p   ). At 0T  , on the con-

trary, the highest concurrence is achieved under zero field at B . At positive p  the concurrence steeply disappears in 

accordance with common view about suppression of entanglement by the magnetic field. 

 

 
FIGURE 17.  Dependence of 

2Tr AB  on T of the states (91). 

 



 
FIGURE 18. Dependence of C  on T of the states (91). 

 

The independence function 
|B Ai  (Fig. 19) points out monotonous amplification of quantum and classical correla-

tions with amplification of negative field ratio p . At positive p  correlations are classical and the temperature de-

pendence is not monotonous – there is a minimum of positive 
|B Ai  (maximum of classical correlation) at the finite 

temperature. The inversed independence function 
|B Ai  (Fig. 20) has much smaller sensitivity of the temperature vari-

ation to the negative p , but much greater sensitivity to the positive p . At 0p   the curve 
| ( )A Bi T  has the inflection 

point (at 0.8T  ), which is absent in the curve 
|B Ai . 

 

 
FIGURE 19. Dependence of |B Ai  on T of the states (91). 

 



 
FIGURE 20. Dependence of 

|A Bi  on T of the states (91). 

 

The classical measure of causality   (Fig. 21) demonstrates that in the domain of its correct implementation 

( 0p  ) directionality of causal connection is expectly independent of the temperature. There is only a weak ampli-

fication of the causal connection at 0.9T  . In the domain of its incorrect implementation ( 0p  )   demonstrates 

the breaks and causality reversals. In Fig 22 behavior of 
2c  and 

2c  against the temperature is shown. At any p  di-

rectionality of the causal connection is independent of the temperature, but its value depends on it. At 0p  , that is 

under the parallel fields, causality utmostly amplifies at the temperature tending to zero and remains almost steady at 

1.3T   (at 0.5p   there is a very weak amplification of causality at the high temperature). Under the antiparallel 

fields ( 0p  ) causality, on the contrary considerably amplifies at the high temperature. The stronger field nonuni-

formity, the sharper this amplification. As it was accepted 1J  , 5AB   in the computations, hence it follows that 

Heisenberg interaction is essential for the causal connection only under the parallel fields. 

 

 
FIGURE 21. Dependence of   on T of the states (91). 



 
FIGURE 22. Dependence of (a) 

2c  and (b) 
2c  on T of the states (91). 

VI. CONCLUSION 

The classical causal analysis had formalized the intuitive understanding of causality that, first, gave the possibili-

ty of its application to the complicated system analysis and, second, gave a quantitative measure of causality. The 

quantum extension of causal analysis has shown a richer picture of the subsystem causal connections, where the 

usual intuitive approach is hampered more commonly. The direction of causal connection is determined by the direc-

tion of irreversible information flow, and the quantitative measure of this connection 
2c  is determined as the veloci-

ty of such flow. The absence of causality corresponds to 
2| |c  , accordingly the degree of causal connection is 

inversely related to 
2c . 

The independence functions used in the causal analysis allow classification of quantum and classical correlations 

of the subsystems, and their employment is of interest in any quantum systems, including those where causality is 

absent.  

The possibilities of causal analysis have been demonstrated by the two series of examples of the two-partite two-

state systems (qubits). The examples in both the series have been arranged in order from the simplest to the most 

nontrivial ones. 

In the first series of the examples (Sec. IV) causality is absent; only the relationship between the independence 

function and the usual measures of entanglement and mixedness is revealed. It has been demonstrated that the inde-

pendence function often but not always is determined by the state mixedness. Most important of all, in a number of 

cases the state can appear classical in entropic sense, but nevertheless be entangled.  

In the second series of the examples (Sec. V) the systems with finite causality have been considered, beginning 

with the simplest example with asymmetric dissipation and ending with the enough complicated case of the qubits 

under a nonuniform external magnetic field at the different temperature. In every case the quantum measure of cau-

sality has been related with the classical one and it has been demonstrated that the latter often leads to apparent in-

version of causal connection or meaninglessness. It has been shown the manner in which the distribution of entan-

glement in a three-partite system leads to the pairwise causal connection. For the case of asymmetric “quantum-

classical” states the positive answer to the question, stated in Ref. [18] about availability of an asymmetry in the 

transfer of quantum information with respect to its direction, has been obtained. For the case of qubits under an ex-

ternal magnetic field the conclusions about nonuniformity field control of directionality of the causal connection 

have been obtained, which can be physically explained by the causal analysis results, but which could not be drawn 

without them. It has been demonstrated that directionality of causal connection is unaffected by temperature, but its 

value is affected by temperature oppositely under the parallel and antiparallel fields. 

Application of the causal analysis to the systems with the number of states more than two should present no prob-

lems in itself, except the usual build-up of calculation cumbersomeness of the density matrix eigenvalues. A genera-



lization to multipartite system involves some complication of the mathematics, but since in the classical case it had 

successfully done before, one would hope that in the quantum case it should present no problems too. 
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