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The Universal Arrow of Time is a key for the solution 

of the basic physical paradoxes. 
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Introduction. 

 
The modern classical statistical physics, thermodynamics, quantum mechanics and gravity 

theory are developed and well-known theories. The described theories are developed and well 

studied for a long time. Nevertheless, it contains a number of paradoxes. It forces many scientists 
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to doubt internal consistency of these theories. However the given paradoxes can be resolved 

within the framework of the existing physics, without introduction of new laws. Further in the 

paper the paradoxes underlying classical statistical physics, thermodynamics, quantum 

mechanics, non-quantum and quantum gravities are discussed. The approaches to solution of 

these paradoxes are suggested on basis universal arrow of time. The first one relies on the 

influence of the external observer (environment), which disrupts the correlations in the system 

and results in time arrows alignment. The second one is based on the limits of self-knowledge of 

the system in case of the observed system, the external observer and the environment are 

included in the considered system. The concepts of observable dynamics, ideal dynamics, and 

unpredictable dynamics are introduced. The phenomenon of complex (living) systems is 

contemplated from the point of view of these dynamics. Perspectives of practical use of 

Unpredictable systems for artificial intellect are considered. 

 

Chapter 1. The Universal Arrow of Time: Classical 

mechanics.  

 

 
 

0. Abstract: Solution of paradox for the entropy increase in 

reversible systems. 
 

Statistical physics cannot explain why a thermodynamic arrow of time exists, unless one 

postulates very special and unnatural initial conditions. Yet, we argue that statistical physics can 

explain why the thermodynamic arrow of time is universal, i.e., why the arrow points in the same 

direction everywhere. Namely, if two subsystems have opposite arrow-directions initially, the 

interaction between them makes the configuration statistically unstable and causes decay towards 

a system with a universal direction of the arrow of time. We present general qualitative 

arguments for that claim and support them by a detailed analysis of a toy model based on the 

baker's map. 

 

1. Introduction 
 

   The origin of the arrow of time is one of the greatest unsolved puzzles in physics [1-5]. It is 

well established that most arrows of time can be reduced to the thermodynamic arrow, but the 

origin of the thermodynamic arrow of time remains a mystery. Namely, the existence of the 

thermodynamic arrow of time means that the system is not in the state with the highest possible 

entropy. 

But this means that the system is not in the highest-probable state, which lacks any statistical 

explanation. The fact that entropy increases with time means that the system was in an even less 

probable state in the past, which makes the problem even harder. Of course, the 

phenomenological fact that entropy increases with time can be described by assuming that the 

universe was in a state with very low entropy at the beginning, but one cannot explain why the 

universe started with such a very special and unnatural initial condition in the first place. 

 

      Recently, Maccone [6] argued that the problem of the origin of the arrow of time can be 

solved by quantum mechanics. He has shown that in quantum mechanics all phenomena which 

leave a trail behind (and hence can be studied by physics) are those entropy of which increases. 
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(The observer's memory erasing argument and the corresponding thought experiments discussed 

in [6], was also used previously for a resolution of entropy increase and the quantum wave-

packet reduction paradoxes [7-9 From this he argued that the second law of thermodynamics is 

reduced to a mere tautology, suggesting that it solves the problem of the arrow of time in 

physics. However, several weaknesses on specific arguments used in [6], have been reported 

[10-12]. As a response to one of these objections, in a later publication [13] Maccone himself 

realized that his approach does not completely solve the origin of the arrow of time because the 

quantum mechanism he studied also requires highly improbable initial conditions which cannot 

be explained. 

    Yet, as Maccone argued in [13], we believe that some ideas presented in [6] and [13] do help 

to better understand the puzzle of the arrow of time. The purpose of this paper is to further 

develop, refine, clarify, and extend some of the ideas which were presented in [8, 9, 14, 15, 16, 

30], and also in a somewhat different context in [6, 13], we argue that quantum mechanics is not 

essential at all. Indeed, in this paper we consider only classical statistical mechanics. 

      The idea is the following. Even though statistical physics cannot explain why a 

thermodynamic arrow of time exists, we argue that at least it can explain why the 

thermodynamic arrow of time is universal, i.e., why the arrow points in the same direction 

everywhere. Namely, if two subsystems have opposite arrow-directions initially, we argue that 

the interaction between them makes the configuration statistically unstable and causes decay 

towards a system with a universal direction of the arrow of time. This, of course, does not 

completely resolve the problem of the origin of the arrow of time. Yet, at least, we believe that 

this alleviates the problem. 

     The paper is organized as follows. In the next section we present our main ideas in an 

intuitive non-technical form. After that, in Sec. 3 the idea is the following. Even though 

statistical physics cannot explain why a thermodynamic arrow of time exists, we argue that at 

least it can explain why the thermodynamic arrow of time is universal, i.e., why the arrow points 

in the same direction everywhere. Namely, if two subsystems have opposite arrow-directions 

initially, we argue that the interaction between them makes the configuration statistically 

unstable and causes decay towards a system with a universal direction of the arrow of time. This, 

of course, does not completely resolve the problem of the origin of the arrow of time. Yet, at 

least, we believe that this alleviates the problem. 

    The paper is organized as follows. In the next section we present our main ideas in an intuitive 

non-technical form. After that, in Sec. 4 we study the effects of weak interactions between 

subsystems which, without interactions, evolve according to the baker's map. In particular, we 

explain how weak interactions destroy the opposite time arrows of the subsystems, by making 

them much more improbable than without interactions. 

Finally, in Sec. 5 we present a qualitative discussion of our results, including the consistency 

with strongly-interacting systems in which the entropy of a subsystem may decrease with time. 
 

 

2. Main ideas. 
 
     A priori, the probability of having a thermodynamic arrow of time is very low. However, 

our idea is to think in terms of conditional probabilities. Given that a thermodynamic arrow 

exists, what can we, by statistical arguments, infer from that? 

   To answer this question, let us start from the laws of an underlying microscopic theory. We 

assume that dynamics of microscopic degrees of freedom is described by a set of second-order 

differential equations (with derivatives with respect to time) which are invariant under the time 

inversion t Ÿ īt. Thus, both directions of time have a priori equal roles. To specify a unique 

solution of the dynamical equations of motion, one also needs to choose some ``initial'' time t0, 

on which initial conditions are to be specified. (The ``initial'' time does not necessarily need to be 

the earliest time at which the universe came into the existence. For any t0 at which the initial 
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conditions are specified, the dynamical equations of motion uniquely determine the state of the 

universe for both t> t0 and t <t0.) It is a purely conventional particular instant on time, which may 

be even in the ``future''. Indeed, in this paper we adopt the ``block-universe'' picture of the world 

(see, e.g., [4, 17, 18, 19] and references therein), according to which time does not ``flow''. 

Instead, the universe is a ''static'' object extended in 4 space-time dimensions. 

   Of course, the a priori probability of small entropy at t0 is very low. But given that entropy at 

t0 is small, what is the conditional probability that there is a thermodynamic arrow of time? It is, 

of course, very high. However, given that entropy at t0 is low, the most probable option is that 

entropy increases in both directions with a minimum at t0 On the other hand, in practice, at times 

at which we make measurements, the entropy is indeed low, but entropy does not increase in 

both directions. Instead, it increases in only one direction. This is because, on a typical t0, not 

only the ''initial'' entropy is specified, but a particular direction of the entropy increase is 

specified as well. At the microscopic level, this is related to the fact that on t0 one does not only 

need to specify the initial particle positions, but also their initial velocities. 

    Given that insight, next we ask the following question. Given that at t0 the entropy is low and 

increases in the positive time direction, what can be statistically inferred from that? In this case, 

the most probable option is that entropy will continue to increase with t for t > t0 , but also that it 

will in the negative time direction for t < t0. . This is, indeed, what we observe in nature. 

  And now here comes the central question of this section. Given that at t0 the entropy is low, 

why entropy at increases in the same (say, positive) direction everywhere? Isn't it more probable 

that the direction of entropy-increase varies from point to point at t0? If so, then why don't we 

observe it? In other words, why the arrow of time is universal, having the same direction 

everywhere for a given $t_0$, having the same direction everywhere for a given t0? We refer to 

this problem as the problem of universality of the arrow of time. 

  In this paper we argue that this problem can be solved by statistical physics. In short, our 

solution is as follows. If we ignore the interactions between different degrees of freedom, then, 

given that at t0 the entropy is low, the most probable option is, indeed, that the direction of the 

arrow of time varies from point to point. On the other hand, if different degrees of freedom 

interact with each other, then it is no longer the most probable option. Instead, even if the 

direction of the arrow of time varies from point to point at t0, the interaction provides a natural 

mechanism that aligns all time arrows to the same direction. 

    To illustrate the arrow-of-time dilemma, the thought experiments of Loschmidt (time reversal 

paradox) and Poincare (recurrence theorem) are also often used. The corresponding paradoxes in 

classical mechanics are resolved as follows. Classical mechanics allows, at least in principle, to 

exclude any effect of the observer on the observed system. However, most realistic systems are 

chaotic. , so a weak perturbation may lead to an exponential divergence of trajectories. In 

addition, there is also a non-negligible interaction. As a simple example, consider a gas 

expanding from a small region of space into a large volume. In this entropy-increasing process 

the time evolution of macroscopic parameters is stable against small external perturbations. On 

the other hand, if all the velocities are reversed, then the gas will end up in the initial small 

volume, but only in the absence of any perturbations. The latter entropy-decreasing process is 

clearly unstable and a small external perturbation would trigger a continuous entropy growth. 

Thus the entropy increasing processes are stable, but the decreasing ones are not. A natural 

consequence is that the time arrows (the directions of which are defined by the entropy growth) 

of both the observer and the observed system are aligned to the same direction, because of the 

inevitable non-negligible interaction between them. They can return back to the initial state only 

together (as a whole system) in both Loschmidt and Poincare paradoxes, so the observer's 

memory gets erased in the end. During this process the time arrow of the observer points in the 

backward direction, this has two consequences. First, an entropy growth is observed in the whole 

system as well as in its two parts, despite the fact that entropy decreases with coordinate time. 

Second, the memory of the observer is erased not only at the end but also close to that point, 
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because the observer does not remember his ``past'' (defined with respect to the coordinate time), 

but remembers his ``future''. 

      Indeed, it may seem quite plausible that interaction will align all time arrows to the same 

direction. But the problem is - which direction? The forward direction or the backward one? 

How can any particular direction be preferred, when both directions are a priori equally 

probable? Is the common direction chosen in an effectively random manner, such that it cannot 

be efficiently predicted? Or if there are two subsystems with opposite directions of time at t0, 

will the ``stronger'' subsystem (i.e., the one with a larger number of degrees of freedom) win, 

such that the joint system will take the direction of the ``stronger'' subsystem as their common 

direction? 

    The answer is as follows: It is all about conditional probabilities. One cannot question the 

facts which are already known, irrespective of whether these facts are in ``future'' or ``past''. The 

probabilistic reasoning is to be applied to only those facts which are not known yet. So, let us 

assume that the entropy is low at t0 and that we have two subsystems with opposite time 

directions at t0. Let us also assume that the subsystems do not come into a mutual interaction 

before t1 (where t1>t0), after which they interact with each other. Given all that, we know that, for 

t0<t<t1, entropy increases with time for one subsystem and decreases with time for another 

subsystem. But what happens for t>t1? Due to the interaction, the two subsystems will have the 

same direction of time for t> t1. But which direction? The probabilistic answer is: The direction 

which is more probable, given that we know what we already know. But we already know the 

situation for t< t1 (or more precisely, for t0<t<t1), so our probabilistic reasoning can only be 

applied to t> t1. 

It is this asymmetry in knowledge that makes two directions of time different. (Of course, the 

interaction is also asymmetric, in the sense that interaction exists for t>t1, but not for t0<t<t1.) 

Thus, the probabilistic reasoning implies that entropy will increase in the positive time direction 

for t>t1. 

    Alternatively, if there was no such asymmetry in knowledge, we could not efficiently predict 

the direction of the arrow of time, so the joint direction would be chosen in an effectively 

random manner.  

    Now we can understand why the arrow of time appears to be universal. If there is a 

subsystem which has an arrow of time opposite to the time-arrow that we are used to, then this 

subsystem is either observed or not observed by us. If it is not observed, then it does not violate 

the fact that the arrow of time appears universal to us. If it is observed then it interacts with us, 

which implies that it cannot have the opposite arrow of time for a long time. In each case, the 

effect is that all what we observe must have the same direction of time. This is similar to the 

reasoning in [6], with an important difference that our reasoning does not rest on quantum 

mechanics. 

 

   In the remaining sections we support these intuitive ideas by a more quantitative analysis 

 

3. Statistical mechanics of the baker's map 
 

The baker's map (for more details see Appendix) maps any point of the unit square to another 

point of the same square. We study a collection of  

N>> 1 such points (called ``particles'') that move under the baker's map. This serves as a toy 

model for a ``gas'' that shares all typical properties of classical Hamiltonian reversible 

deterministic chaotic systems. Indeed, due to its simplicity, the baker's map is widely used for 

such purposes [20, 23, 24, 25]. 

 

3.1 Macroscopic entropy and ensemble entropy 
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To define a convenient set of macroscopic variables, we divide the unit square into 4 equal 

subsquares. Then the 4 variables N1, N2, N3, N4, denoting the number of ``particles'' in the 

corresponding subsquares, are defined to be the macroscopic variables for our system. (There 

are, of course, many other convenient ways to define macroscopic variables, but general 

statistical conclusion are not expected to depend on this choice.) The  

macroscopic entropy Sm of a given macrostate is defined by the number of different microstates 

corresponding to that macrostate, as 

 

 
This entropy is maximal when the distribution of particles is uniform, in which case Sm is Sm

max
 

= N log4. Similarly, the entropy is minimal when all particles are in the same subsquare, in 

which case Sm = 0. 

  Let (x, y) denote the coordinates of a point on the unit square. In physical language, it 

corresponds to the particle position in the 2-dimensional phase space. For N particles, we 

consider a statistical ensemble with a probability density ɟ(x1, y1;...; xN, yN; t) on the  2N 

dimensional phase space. Here t is the evolution parameter, which takes discrete values t = 0, 1, 

2... for the baker's map. Then the ensemble entropy is defined as 

 

 
 

where 

                               
 

In general, ɟ and Se change during the evolution generated by the baker's map and depend on the 

initial ɟ. However, if the initial probability-density function has a form 

 

 
which corresponds to an uncorrelated density function, then the probability-density function 

remains uncorrelated during the evolution. 

   As an example, consider ɟ(xl, yl) which is uniform within some subregion  

Ɇ (with area A<1) ) of the unit square, and vanishes outside of  Ɇ. In other words, let 

 

 

 
In this case 

 

 
 

   Since A does not change during the baker's map evolution, we see that Se is constant during the 

baker's map evolution. This example can be used to show that Se is, in fact, constant for arbitrary 

initial probability function. To briefly sketch the proof, let us divide the unit 2N-dimensional box 

into a large number of small regions ×a, on each of which the probability is equal to ɟa. During 

the evolution, each region ×a changes the shape, but itôs 2N-dimensional ''area'' Aa remains the 
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same. Moreover, the probability ɟa on the new ×a also remains the same. Consequently, the 

ensemble entropy  remains the same as well. This is the basic idea of a 

discrete version of the proof, but a continuous version can be done in a similar way. 
 

3.2 Appropriate and inappropriate macroscopic variables 
 

The macroscopic variables defined in the preceding subsection have the following properties: 

 

1. For most initial microstates having the property Sm < Sm
max

, Sm increases during the baker's 

map. 

2. For most initial microstates having the property Sm = Sm
max

, Sm remains constant during the 

baker's map. 

3. The two properties above do not change when the baker's map is perturbed by a small noise. 

 

  

We refer to macrovariables having these properties as appropriate macrovariables. 

     Naively, one might think that any seemingly reasonable choice of macrovariables is 

appropriate. Yet, this is not really the case. Let us demonstrate this by an example. Let us divide 

the unit square into 2
M

 equal vertical strips (M>>1). We define a new set of macrovariables as 

the numbers of particles inside each of these strips. Similarly to (1), the corresponding 

macroscopic entropy is 

 

 
where Nk is the number of particles in strip k. For the initial condition, assume that the gas is 

uniformly distributed inside odd vertical strips, while even strips are empty. Then Sm < Sm
max

 

initially. Yet, for a long time during the baker's evolution, Sm does not increase for any initial 

microstate corresponding to this macrostate. However, during this evolution the number of filled 

strips decreases and their thickness increases, until only one thick filled vertical strip remains. 

After that, Sm starts to increase. We also note that the evolution towards the single strip can be 

easily destroyed by a small perturbation. 

    Thus we see that vertical strips lead to inappropriate macrovariables. By contrast, horizontal 

strips lead to appropriate macrovariables. (Yet, the macrovariables in (1) are even more 

appropriate, because they lead to much faster growth of Sm.) This asymmetry between vertical 

and horizontal strips is a consequence of the intrinsic asymmetry of the baker's map with respect 

to vertical and horizontal coordinates. This asymmetry is analogous to the asymmetry between 

canonical coordinates and moments in many realistic Hamiltonian systems of classical 

mechanics. Namely, most realistic Hamiltonian systems contain only local interaction between 

particles, where locality refers to a separation in the coordinate (not momentum!) space. 

     Finally, we note that evolution of the macroscopic variables Nk(t), k = 1, 2, 3, 4,  is found by 

averaging over ensemble in the following way 

 

 
 

3.3 Coarsening 
 

As we have already said, the ensemble entropy (unlike macroscopic entropy) is always constant 

during the baker's map evolution. One would like to have a modified definition of the ensemble 
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entropy that increases similarly to the macroscopic entropy. Such a modification is provided by  

coarsening, which can be defined by introducing a coarsened probability-density function 

. 

 

 
where ȹ is nonvanishing is some neighborhood of  In this way, the 

coarsened ensemble entropy is 

 

 
Of course, the function ȹ can be chosen in many ways. In the following we discuss a few 

examples. 

   One example is the Boltzmann coarsening, defined by     

 

 
where 

 

 

and similarly for other  

   Another example is isotropic coarsening, having a form 

 

 
       Yet another example is the Prigogine coarsening [20] 

 

 
 

which is an anisotropic coarsening over the shrinking direction.  

    Finally, let us mention the coarsening based on dividing the system into two smaller 

interacting subsystems. The coarsened ensemble entropy for the full system is defined as the sum 

of uncoarsened ensemble entropies of its subsystems. Such coarsened entropy ignores the 

correlations between the subsystems. 

    All these types of coarsening have the following property: If the initial microstate is such that 

macroscopic entropy increases, then the coarsened ensemble entropy also increases for that 

initial microstate. Yet, the Prigogine coarsening has the following advantages over Boltzmann 

and isotropic coarsenings: 

    First, if the initial microstate is such that the macroscopic entropy decreases, then the 

Prigogine coarsened ensemble entropy does not decrease, while the Boltzmann and isotropic 

coarsened ensemble entropies decrease. 

     Second, assume that the initial microstate is such that the macroscopic entropy increases, and 

consider some ``final'' state with a large macroscopic entropy close to the maximal one. After 

this final state, consider it's ``inverted'' state, (i.e., the state with exchanged x and y). Then the 

Prigogine coarsened ensemble entropy decreases in jump during such transform from the high-

entropy final state to it's ``inverted'' state, while the Boltzmann and isotropic coarsened ensemble 

entropies remain unchanged. 
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    Thus, the Prigogine coarsening provides the most correct description of the ensemble-entropy 

increase law without any additional assumptions. For example, to get the same result with 

Boltzmann coarsening, one would need to introduce the additional ``molecular chaos hypothesis'' 

to replace ɟ(x 1, y 1; x 2, y 2)  with ɟ(x 1, y 1) ɟ (x 2, y 2)  in the equation of motion for  

ɟ(x, y, t). 

 

 

 

 

 

4. The effects of weak interactions 
 

4.1 Small external perturbations 
 

   The growth of the ensemble entropy can be achieved even without coarsening, by introducing 

a small external perturbation of the baker's map. The perturbation must be small enough not to 

destroy the growth of macroscopic entropy, but at the same time, it must be strong enough to 

destroy the reverse processes and Poincare returns. For most such perturbations, the qualitative 

features of the evolution do not depend much on details of the perturbation. 

     There are two ways how the external perturbation can be introduced. One way is to introduce 

a small external random noise. The macroscopic processes with the increase of macroscopic 

entropy are stable under such a noise. However, the area of a region is no longer invariant under 

the perturbed baker's map. In this way the ensemble entropy can increase. 

      The other way is to introduce a weak interaction with the environment (which can be thought 

of as an ``observer''). Again, the macroscopic processes with the increase of macroscopic entropy 

are stable, but the area of a region is no longer invariant under the perturbed baker's map. 

Consequently, the ensemble entropy can increase. However, such a system is no longer isolated. 

Instead, it is a part of a larger system divided into two subsystems. Hence, as we have already 

explained in Sec.3.3, the coarsened ensemble entropy for the full system can be defined as the 

sum of uncoarsened ensemble entropies of its subsystems. In the next subsection we study the 

weak interactions with the environment in more detail. 

 

 

4.2 Weak interaction and the destruction of opposite time 

arrows 
 

To proceed, one needs to choose some specific interaction between two gases. In the absence of 

interaction, each of them evolves according to the baker's map. We put the two unit squares one 

above another and specify the interaction with distance ů such that, between two steps of the 

baker's map, all closest pairs of particles (with distance smaller than ů between them) exchange 

their positions. (More precisely, we first find the pair of closest particles (with distance smaller 

than ů between them) and exchange their positions. After that, we find the second pair of 

closest particles (with distance smaller than ů between them and different from previously 

chosen particles) and exchange their positions too. We repeat this procedure until we exhaust all 

particles.) The interactions happen only between the particles in different subsystems. It has not 

sense to introduce such interaction inside of subsytems. Indeed, such interaction does not affect 

the motion of the particles, but gives rise to the mixing between the two subsystems when two 

particles of the pair belong to different subsystems. When they belong to the same system, we 

interpret them as trivial irrelevant exchanges, and consequently think of them as exchanges that 

have not happened at all. 



 11 

     Note also that such mixing by itself does not lead to the Gibbs paradox, as long as we 

consider the two unit squares as separate objects. The macroscopic entropy is defined as the sum 

of macroscopic entropies of the two subsystems. 

     Now let us consider the case in which the time arrows of the two subsystems have the same 

direction. The processes in which the macroscopic entropies of the two subsystems increase are 

stable under the interaction. Thus, most low-entropy initial conditions lead to a growth of 

macroscopic entropy of both subsystems, as well as of the full system. 

     Similarly, if we inverse a process above with increasing macroscopic entropy, we obtain a 

system in which macroscopic entropy of both subsystems, as well as of the full system - 

decreases. In this sense, the interaction does not ruin the symmetry between the two directions of 

time. 

  Now let us consider the most interesting case, in which entropy increases in the first 

subsystem and decreases in the second. The initial state of the first subsystem has low entropy 

(for example, all particles are in some small square near the point (0, 0) of the unit square). 

Likewise, the second system has low entropy (for example, all particles are in some small square 

near the point (1, 1) of the unit square) in the state 

     If there was no interaction, the final state of the first subsystem would be a high-entropy state 

corresponding to a nearly uniform distribution of particles. Likewise, the initial state of the 

second system would be a high-entropy state of the same form. 

   However, the solutions above with two opposite arrows of time are no longer solutions when 

the interaction is present. In most cases, the interaction mixes the particles between the 

subsystems. The number of solutions with interaction which have the initial-final conditions 

prescribed above is very small, in fact much smaller than the number of such solutions in the 

absence of interaction. 

   Let us make the last assertion more quantitative. After an odd number of (non-trivial) 

exchanges, the particle transits to the other subsystem. Likewise, after an even number of such 

exchanges, it remains in the same subsystem. The probabilities for these two events are equal to  

p = 1/2 and do not depend on other particles, at least approximately. Further, we can argue that 

the mixing between the two subsystems is negligible in the initial and final states, as the 

entropies of the two subsystems are very different. We want to calculate the probability of a 

small mixing in the final state, given that the mixing is small in the initial state. For definiteness, 

we shall say that the mixing is small if the number Nt, of transited particles is either Nt <N/4, or 

Nt> 3N/4. Thus, the probability is given by the cumulative binomial distribution F(Nt; N, 1/2), 

given by 

  

 

where [k] is the greatest integer less than or equal to k. The function F (k; n, p), satisfies the 

bound  

 

 
Thus, since the opposite time arrows of subsystems are not destroyed when  

Nt <N/4 or Nt> 3N/4, we see that the probability of this is equal to 
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Clearly, it decreases exponentially with N, which means that such a probability is negligibly 

small for large N. Hence, it is almost certain that processes with opposite time arrows will be 

destroyed  

       In the model above, we need a nearly equal number of particles in the two subsystems to 

destroy the opposite time arrows. This is because one particle can influence the motion of only 

one close particle. For more realistic interactions, one particle can influence the motion of a large 

number of particles in its neighborhood, which means that even a very small number of particles 

in one system can destroy the entropy decreasing processes of the other system. 

 

 

4.3 Decorrelation in the interacting system 
 

   Hamiltonian systems are described not only by a macrostate, but also by complex nonlinear 

correlations between microstates. These correlations are responsible for reversibility. The 

interaction between two subsystems destroys these correlations inside the subsystems, but the 

full system remains reversible, i.e., the correlations appear in the full system. Thus, the 

decorrelation in the subsystems expands the correlations over the full system. (This process is a 

classical analogue of decoherence in quantum mechanics.) 

 

Let us put these qualitative ideas into a more quantitative form. Linear (Pearson) correlations 

have a behavior very similar to the nonlinear correlations described above. The only difference is 

that these linear correlations decrease with time. The interaction we proposed can be 

approximated by a random noise with amplitude corresponding to a distance $\sigma$ of the 

interaction between the particles. 

     Therefore, we expect that the interaction not only causes the alignment of the time arrows, but 

also decay of correlation which is even stronger than that without the interactions (Sec. A.5). ). 

During this process the evolution of subsystems is irreversible, but the full system remains 

reversible. 

      We can quantify this decay of correlations by calculating the Pearson correlation for our 

subsystems, given by 

 

 
where <C

m 
(0)> is the expected variance of the random variable  x, calculated after m iterations 

of the map. The variance C
m 

(0) can be calculated as 

 

 

where S is a random number defined as . Here ɕk is an i.i.d. random number 

with zero mean and variance ů
2
, which models the influence of interactions on the evolution of 

the system. After a short calculation we get 

 

Using the properties of i.i.d. variables , it follows that 
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It is clear that the interactions will enhance the decay of correlations of at least linear 

dependencies, because 

 

 

Yet, for the full system the Pearson correlation  remains the same. Since  

must be much smaller than the system size (unit square), we can conclude that our assumptions 

resulting in (22) are correct only for  and  . 

 

 

 

4.4 Numerical simulation 
 

So far, we have been using general abstract arguments. In this subsection we support these 

arguments by a concrete numerical simulation.  

 

 
ʈʠʩ. 1  The initial particle configuration at t = 1. 
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ʈʠʩ. 2 Evolution of entropy without interaction. 

 

 

 

We consider two subsystems (labeled as 1 and 2), each with N1 = N2 = 300 particles. The two 

subsystems occupy two unit squares. To define the coarsened entropy, each unit square is 

divided into 16x16=256 small squares. Thus, the entropy in the two subsystems is given by 

 

 

 

where and  is the number of particles in the corresponding 

small square. Similarly, the total entropy is defined as 

 

 
where     
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ʈʠʩ. 3 Evolution of entropy with interaction. 

 

 

   For the system 1 we choose a zero-entropy initial state at t = 1 (see Fig. 1). ). Similarly, for 

the system 2 we choose a zero-entropy ñinitialò state at  

t = 6. Such initial conditions provide that, in the absence of interactions, S1 increases with time, 

while S2 decreases with time for t <6.  

   To avoid numerical problems arising from the finite precision of computer representation of 

rational numbers, (27) is replaced by , with a= 1.999999. 

The results of a numerical simulation are presented in Fig. 1 and Fig. 2. 

   To include the effects of interaction, we define interaction in the following way. (For the sake 

of computational convenience, it is defined slightly differently than in Sec.4.2.) We take a small 

range of interaction 

 ry = 0.01 in the  y-direction, which can be thought of as a parameter that measures the weakness 

of interaction. (Recall that y and x are analogous to a canonical coordinate and a canonical 

momentum, respectively, in a Hamiltonian phase space.) The interaction exchanges the closest 

pairs similarly as in Sec. 4.2, but now ``the closest'' refers to the distance in the y-direction, and 

there is no exchange if the closest distance is larger than ry.  

In addition, now interaction is defined such that only the x-coordinates of the particles are 

exchanged. By choosing the same initial conditions at t = 1 as in the non-interacting case (Fig. 

1), the results of a numerical simulation with the interaction are presented in Fig. 3. We see that 

with interaction (Fig. 3) S2 starts to increase at earlier times than without interaction (Fig. 2). 

 

5 Discussion 

 
   In this paper, we have used the toy model based on the baker's map to demonstrate features 

which seem to be valid for general systems described by reversible Hamiltonian mechanics. 

Clearly, for such systems one can freely choose either final or initial conditions, but one cannot 

freely choose mixed initial-final conditions. Mixed initial-final conditions are conditions when 

canonical variables for the first part of particles are defined in initial state and canonical 

variables for the second part of particles are defined in final state.  For most such mixed initial-

final conditions, an appropriate solution (of the Hamiltonian equations of motion) does not exist. 

Similarly, our toy model suggests that for most Hamiltonians with weak interactions, the number 

of solutions with given coarse-grained initial-final conditions is much smaller then the number of 

solutions with only coarse-grained initial or only coarse-grained final conditions. This explains 
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why, in practice, we never observe subsystems with opposite arrows of time, i.e., why the arrow 

of time is universal. 

 

In a sense, this destruction of opposite arrows of time is similar to ergodicity. Both properties are 

valid for all practical purposes only, they are not exact laws. They are true for most real systems, 

but counterexamples can always be found [21, 22]. . Also, they both may seem intuitively 

evident, but to prove them rigorously is very difficult. For ergodicity the relevant rigorous result 

is the KAM (Kolmogorovʚ-Arnold-Moser) theorem, while for the destruction of the opposite 

time arrows a rigorous theorem is still lacking. 

      Our results also resolve the ``contradiction" between the Prigogine's 

``New Dynamics" [20] (discussed in Sec. 3.3 of the present paper) and Bricmont's comments 

[26]. Dynamics of interacting systems we can be divided into two types of dynamics: 

 

1. Reversible ideal dynamics is considered with respect to the coordinate time, in which case 

entropy can either decrease or increase.  

2. Irreversible observable dynamics is considered with respect to the intrinsic time arrows of 

interacting systems, in which case entropy increases as we can see above. 

    

   In the framework of this terminology, the Prigogine's ``New Dynamics" [20] is one of the 

forms of the observable dynamics, while the Bricmont's paper [26] considers ideal dynamics. In 

particular, the observable dynamics does not include Poincare's returns and reversibility that are 

indeed unobservable by a real observer, which makes it simpler than ideal dynamics. Yet, in 

principle, both types of dynamics are correct. 

     It should also be noted that our results are not in contradiction with the existence of 

dissipative systems [27] (such as certain self-organizing biological systems) in which entropy of 

a subsystem can decrease with time, despite the fact that entropy of the environment increases. 

The full-system entropy (including the entropies of both the dissipative system and the 

environment) increases, which is consistent with the entropy-increase law. For such systems, it is 

typical that the interaction with the environment is strong, while results of our paper refer to 

weak interactions between the subsystems. For example, for existence of living organisms, a 

strong energy flow from the Sun is needed. The small flow from the stars is not sufficient for 

life, but is sufficient for the decorrelation and for the alignment of the time arrows. To quote 

from [6] : ``However, an observer is macroscopic by definition, and all remotely interacting 

macroscopic systems become correlated very rapidly (e.g. Borel famously calculated that 

moving a gram of material on the star Sirius by 1m can influence the trajectories of the particles 

in a gas on earth on a time scale of  ɛs [28]).ò 

 

Appendix A. Basic properties of the baker's map 
 

In this appendix we present some basic properties of the baker's map. More details can be found, 

e.g., in [29]. 

 

 
Fig. 4. Geometric interpretation of the baker's map. (a) Initial configuration. (b) Uniform 

squeezing in vertical direction and stretching in horizontal direction by a factor of 2. (c) The final 
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configuration after cutting the right half and putting it over the left one. (d) The final 

configuration after two iterations. 

 

A.1 Definition of the baker's map 
 

Consider a binary symbolic sequence. 

  

 
 

infinite on both sides. Such a sequence defines two real numbers 

 
 

The sequence can be moved reversibly with respect to the semicolon in both directions. After the 

left shift we get new real numbers 

 

 
 

 

where [x]  is the greatest integer less than or equal to x. This map of unit square into itself is 

called the baker's map.  

   The baker's map has a simple geometrical interpretation presented in Fig.4. There (a) is the 

initial configuration and (c) is the final configuration after one baker's iteration, with an 

intermediate step presented in (b). The (d) part represents the final configuration after two 

iterations. 

 

 

A.2 Unstable periodic orbits 
 
    The periodic symbolic sequences (0) and (1) correspond to fixed points  

 (x, y) = (0, 0) and (x, y) = (1, 1, respectively. The periodic sequence (10) corresponds to the 

period-2 orbit {(1/3, 2/3), (2/3, 1/3)}. From periodic sequence ...001; 001... we get {(1/7, 4/7), 

(2/7, 2/7), (4/7, 1/7)}. Similarly, from ...011; 011... we get {(3/7, 6/7), (6/7, 3/7), (5/7, 5/7)}.  

    Any x and y can be approximated arbitrarily well by 0.X0...Xn and 0.Y0... Ym, , respectively, 

provided that n and m. are sufficiently large. Therefore the periodic sequence (Ym...Y0X0...Xn), 

can approach any point of the unit square arbitrarily close. Thus, the set of all periodic orbits 

makes a dense set on the unit square. 

 

A.3 Ergodicity, mixing, and area conservation 
 

     Due to stretching in the horizontal direction, all close points diverge exponentially under 

the baker's iterations. In these iterations, a random symbolic sequence approaches any point of 

the square arbitrarily close. In general, such an ergodic property can be used to replace the 

``time'' average <A> by the ``ensemble'' average 
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where dɛ(x,y) is the invariant measure and ɟ(x, y)  is the invariant density for the map. For the 

baker's map, ɟ(x, y)= 1.  

  Under the baker's iterations, any region maps into a set of narrow horizontal strips. Eventually, 

it fills uniformly the whole unit square, which corresponds to mixing. Similarly, reverse 

iterations map the region into narrow vertical strips, which also corresponds to mixing. 

     During these iterations, the area of the region does not change. This property is the area 

conservation law for the baker's map. 

 

 

A.4 Показатели степени Ляпунова, сжимающиеся и 

растягивающиеся направления 
 

If  and  have equal k first binary digits, then, for n<k, 

 

 
where ȿ= log 2 is the first positive Lyapunov exponent for the baker's map. Consequently, the 

distance between two close orbits increases exponentially with increasing n, and after k iterations 

becomes of the order of 1. This property is called sensitivity to initial conditions. Due to this 

property, all periodic orbits are unstable. 

        Since the area is conserved, the stretching in the horizontal direction discussed above 

implies that that some shrinking direction must also exist. Indeed, the evolution in the vertical y-

direction is opposite to that of the horizontal x-direction. If  and  are two 

points with  

, then  

 

 
 

Hence ȿ= īlog 2 is the second negative Lyapunov exponent for the baker's map. 

 

 

A.5 Decay of correlations 
 

Since x -direction is the unstable direction, the evolution in that direction exhibits a decay of 

correlations. The average correlation function C(m) for a sequence xk is usually defined as 

 

 

 

where . Correlations can be more easily calculated if one knows the 

invariant measure ɛ(x), in which case 
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where f
m
(x) = xm is the function that maps the variable x to its image after $m$ iterations of the 

map. For the baker's map dɛ(x)=dx, so we can write 

 

 

 
 

which yields 

 

 
For the baker's map <x>=İ, so the sum above can be calculated explicitly 

 
 

This shows that the correlations decay exponentially with m. The Pearson correlation for the 

system is given by 
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Chapter 2. The Universal Arrow of Time: Quantum 

Mechanics  
 

 

0. Abstract: Solution of Schrodinger’s cat paradox, Wigner's 

friend paradox, paradox of a kettle which will never begin to 

boil 

 
This paper is a natural continuation of our previous paper [1] and Chapter 1 of this essay. We 

illustrated earlier that in classical Hamilton mechanics, for overwhelming majority of real 
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chaotic macroscopic systems, alignment of their thermodynamic time arrows occurs because of 

their low interaction. This fact and impossibility to observe entropy decrease at introspection 

explain the second law of thermodynamics. The situation in quantum mechanics is even a little 

bit easier: all closed systems of finite volume are periodic or nearly periodic. The proof in 

quantum mechanics is in many respects similar to the proof in classical Hamilton mechanics ï it 

also uses small interaction between subsystems and impossibility to observe entropy decrease at 

introspection. However, there are special cases which were not found in the classical mechanics. 

In these cases one microstate corresponds to a set of possible macrostates (more precisely, their 

quantum superposition). Consideration of this property with use of decoherence theory and 

taking into account thermodynamic time arrows will introduce new outcomes in quantum 

mechanics. It allows to resolve basic paradoxes of quantum mechanics: (a) to explain the 

paradox of wave packet reduction at measurements when an observer is included in the system 

(introspection) (paradox of the Schrodinger cat); (b) to explain unobservability of superposition 

of macroscopic states by an external observer in real experiments (paradox of Wigner's friend); 

(c) to prove full equivalence of multi-world and Copenhagen interpretations of quantum 

mechanics; (d) to explain deviations from the exponential law at decay of particles and pass from 

one energy level to another (paradox of a kettle which will never begin to boil). 
 

1. Introduction 

 
   First of all, it is necessary to note that in our paper, unless other is stipulated, a full system is 

located in a closed finite volume, contains a finite number of particles and is isolated from 

environment. These are principal requirements of the entropy increasing law which we consider. 

The full system can be also described in terms of quantum mechanics laws. 

   In our previous paper [1] we considered alignment of thermodynamic time arrows in classical 

Hamilton mechanics leading to proof of the entropy increasing law. Here we intend to consider a 

quantum case. The reason of alignment of thermodynamic time arrows in quantum mechanics is 

the same as in the classical mechanics. It is ñentanglingò and ñdecoherenceò [2-3, 17, 24-27], 

that is, low interaction between real chaotic macroscopic systems or a real chaotic macroscopic 

system in unstable state and a quantum microsystem (process of measurement in quantum 

mechanics). 

   Use of phenomenon of alignment of thermodynamic time arrows on quantum mechanics for 

analysis of widely known paradoxes of quantum mechanics allows their full and consistent 

resolution. All these paradoxes are caused by experimental unobservability for real macroscopic 

bodies of such purely quantum phenomena predicted by a quantum mechanics as (a) 

superposition of macrostates for the Copenhagen interpretation, or (b) presence of multiple 

worlds in case of multi-world interpretation. 

   Indeed, quantum mechanics has the principal difference from classical one: if in classical 

mechanics one microstate corresponds to just one macrostate, then in quantum mechanics one 

microstate (a pure state characterized by a wave function) can correspond to a set of macrostates. 

(In other words, this microsate is superposition of microstates corresponding to various 

macrostates). Such situation is not possible in classical mechanics! Moreover, such state can not 

be considered as a simple mixed state, i.e. a classical ensemble of these several macrostates (to 

be more exact, of macrostates corresponding to them which are included into the superposition) 

with corresponding probabilities. Evolution of these superpositions and mixed states is different. 

This difference is related to presence of interference terms for superposition (or quantum 

correlations of the worlds for multi-world interpretation). Although this difference is very small 

for macroscopic bodies, yet it exists. What would prevent to observe this difference 

experimentally? The same reasons that prevents to observe entropy decreasing because of 

alignment of thermodynamic time arrows! 

    Indeed, the more the detailed analysis below shows that experimental manifestations of 

interference (quantum correlations) are demonstrated in considerable scale only at entropy 



 22 

decrease. This process is not observable in principle if the observer is included into the 

observable system (introspection). Thus, entropy decrease is very difficultly observable if the 

observer is not included in the observed macrosystem, because of alignment of thermodynamic 

time arrows of the observable system and the observer/environment during decoherence. Almost 

full isolation of the macrosystem from environment / the observer is necessary between 

observations. 

     Also, small manifestations of the interference (quantum correlations) at entropy increase 

cannot be observed at introspection in principle (at introspection the full observation will be 

impossible ï only macroparameters can be measured exactly, the full measuring is impossible). 

They are very difficultly observable for the external observer case because of decoherence with 

the observer/environment. 

 

2. Qualitative consideration of the problem. 
 
    The reason of alignment of thermodynamic time arrows in quantum mechanics, as well as in 

classical mechanics, is low interaction between real chaotic macroscopic systems. It is a well 

studied phenomenon named ñdecoherenceò [2-3, 17, 24-27]. It results is not only in widely 

known ñentanglingò states of systems but also in alignment of thermodynamic time arrows. (The 

direction of a thermodynamic time arrow is defined by the direction of the entropy increase). The 

reason of alignment of thermodynamic time arrows is absolutely the same as in classical 

Hamilton mechanics: instability of processes with opposite time arrows with respect to small 

perturbations. These perturbations exist between the observer/environment and the observed 

system (decoherence). 

    Similar arguments in the case of quantum mechanics were given in Macconeôs paper [4]. 

However, therein he formulated that the similar logic is applicable only in quantum mechanics. 

Incorrectness of this conclusion was shown in our previous papers [1, 5]. The other objection to 

his judgments was formulated in paper [6]. Therein small systems with strong fluctuations are 

considered. Alignment of thermodynamic time arrows does not exist for such small systems. It 

must be mentioned that both Macconeôs replay to this objection and the subsequent paper of the 

authors of the objection [7] do not explain the true reason of the disagreement described. The 

real solution is very simple. More specifically, the entropy increase law, the concept of 

thermodynamic time arrows and their alignment are applicable only to non-equilibrium 

macroscopic objects. Violation of these laws for microscopic systems with strong fluctuations is 

a widely known fact. Nevertheless, although the objection [6] is trivial physically, yet it is 

interesting from purely mathematical point of view. It gives good mathematical criterion for 

macroscopicity of chaotic quantum systems. 
    The situation in quantum mechanics is even simpler than in classical one: chaotic quantum 

systems are nearly periodic systems. Their chaotic character is defined by the fact that the 

energies (eigenvalues of a Hamiltonian determining ñfrequenciesò of energy modes) are 

distributed over the random law [8]. 

      One can often see a statement that behavior of quantum chaotic systems differs very strongly 

from that of classical ones. It is, however, a bad mistake related to deep misunderstanding of 

physics of these systems. Really, quantum chaotic systems are nearly periodic, whereas classical 

chaotic systems are characterized by the random law for Poincareôs returns times. 

Thermodynamic time arrows of the observer and the observable system have the same direction. 

Therefore, the observer is capable to carry out observation (or introspection) only on finite time 

intervals when its time arrow exists (i.e. its state is far from thermodynamic equilibrium), and it 

does not change its direction. On such finite times (that the observer is capable to carry out 

observation during this time) the behavior of chaotic quantum systems has the same character as 

that for classical quantum systems. 
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     Decoherence results in transition of observed systems from a pure state to mixed one, i.e. 

results in entropy increase. (Actually, one macrostate transforms to the set of microstates). On 

the other hand, Poincareôs returns yield the inverse result (i.e. ñrecoherenceò) and are related to 

the entropy decrease. Thus, decoherence and the correspondent alignment of thermodynamic 

time arrows of the observer and observable systems shall also lead to the syncs of moments 

when the systems pass from pure states to mixed states. Consequently, it makes impossible to 

observe experimentally the inverse process (i.e. ñrecoherenceò). 

    Summing up the above mentioned, consideration of alignment of thermodynamic time arrows 

in quantum mechanics is in many aspects similar to consideration in classical mechanics. 

However, consideration of this property for analysis of widely known paradoxes of quantum 

mechanics gives their full and consistent resolution. These are the following paradoxes: (a) 

explaining the paradox of wave packet reduction at measurements when an observer is included 

in system (introspection) (paradox of the Schrodinger cat); (b) explaining unobservability of 

superposition of macroscopic states by an external observer in real experiments (paradox of 

Wigner's friend); (c) proving the full equivalence of multi-world and Copenhagen interpretations 

of quantum mechanics; (d) explaining deviations from the exponential law at decay of particles 

and pass from one energy level on another (paradox of a kettle which will never begin to boil). 

    As it is described above, in quantum mechanics the solution of the problem of alignment of 

thermodynamic time arrows is similar to that in classical mechanics. But there is one important 

exception. In classical mechanics one microstate (a point in a phase space) corresponds to just 

one macrostate. In quantum mechanics one microstate (wave function) can correspond to the set 

of possible macrostates (quantum superposition of the wave functions corresponding to this 

macrostates). This situation appears in the well-known paradox of "Schrodinger cat". 

   Multi-world interpretation of quantum mechanics is very popular today. It states that these 

different macrostates correspond to different worlds. These parallel worlds exist simultaneously 

and interfere (summing to each other). It is suggested as a solution of ñSchrºdinger catò paradox. 

    But then the following question appears: Why do we need to suppose simultaneous existence 

of these worlds? Instead we can say: ñThe system collapses in one of these macrostates with the 

probability defined by Bohrôs rules. Why do we need these mysterious parallel worlds?ò This 

point of view is named Copenhagen Interpretation. 

   The following objections are usually given: 

1. We do not have any mechanisms describing the collapse in Copenhagen Interpretation. 

2. We accept that wave functions are something which really exists. 

3. These wave functions and their superposition satisfy to Schrodinger equations. 

4. Multi-world interpretation follows automatically from 1 and 2. 

5. Decoherence, which is also a consequence of Schrodinger equations, explains why we can see 

as a result only one of the worlds (with corresponding Bohrôs probabilities). 

 
      But here it is possible to object to it: ñYes, we donôt have any collapse mechanism. But we 

need not know it. We just postulate such collapse. Moreover, we do not want at all to know this 

mechanism. Really, we are capable to describe and calculate any physical situation without this 

knowledgeò. 

 

But such approach encounters the following difficulties: 

1. We cannot specify or calculate the exact instant when this collapse takes place. For 

macrobodies it is possible to specify just a very narrow, but still a finite interval of time in 

which this collapse happens. 

2. For macrobodies there is a quite clear separation between the worlds (because of decoherence) 

but it will never be full. There is always some small "overlapping" between the worlds (the 

interference terms, quantum correlations of the worlds) even for macrobodies. Decoherence 

which is described above resolves the problem only partially. It ñseparatesò macroworlds not 

completely but leaving this small "overlapping".  
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3. There are specific models of collapse (so-called GRW theory [16]). They can be verified 

experimentally. But until now, such experiments did not give any proof of existence of such 

collapse. They give only boundaries on parameters for such models (in the case when they are 

really true) defined by accuracy of the experiment. 

 

But it is possible to object again: 

     

1. Yes, there is a problem to define exact collapse times. But exactly the same problem does 

exist in multi-world interpretation as well: in what instant does the observer see, in what of 

the possible worlds he has occurred? 

2. The problem of "overlapping" of the worlds also exists in the multi-world interpretation. 

Indeed, the observer sees only one world in some instant. He can tell nothing about existence 

or non-existence of other parallel worlds. So, he can conclude all predictions of the future 

(based on Bohrôs rules) only on knowing of ñhisò world. But due to "overlapping" of the 

worlds (even just a small one) some effects appear which cannot be based on his predictions. 

It means that quantum mechanics cannot give even an exact probabilistic prediction. 

3. It is possible to add one more uncertainty that exists in both interpretations. Suppose, for 

example that a superposition of two macrostates exists: ñan alive catò and ña dead catò. Why 

does the world split (or collapse) into these two states? What is wrong with the pair: (ñan alive 

catò ï ña dead catò), (ñan alive catò + ña dead catò)? 

 

The three problems described above lead to uncertainty of predictions done by means of 

quantum mechanics. It cannot be inserted even within probabilistic frameworks based on Bohrôs 

rules. This uncertainty is very small for macrobodies but it exists. It exists for all interpretations, 

yet masking and changing its form.  

    The majority of interpretations are developed with aim of overcoming these problems. 

Actually, different interpretations only ñmaskò the uncertainty problem yet not solving it. 

 

4.     All which is told above about GRW theories is true. There is no necessity to use it instead 

of quantum mechanics. However, it is not correct for Copenhagen Interpretation. The 

Copenhagen Interpretation resembles GRW very much but one important feature is very much 

different from GRW. The Copenhagen Interpretation postulates the collapse only for one final 

observer. It does not demand the collapse from the remaining macroobjects and observers. P 

A physical experiment is described from a point of view of this final observer. The final 

"observer" is not some person possessing mysterious "consciousness". It is some standard 

macroscopic object. It is far from its state of thermodynamic equilibrium. The final observer is 

the last in the chain of observers and macrobodies. Direction of his thermodynamic time arrows 

is chosen as "positive" direction. It is similarly to our previous paper [1]. This constrain on 

collapse leads to serious consequence which does not appear in GRW. Namely, the existence of 

the collapse in GRW can be verified experimentally, but existence of the collapse in Copenhagen 

Interpretation cannot be proved or disproved even in principle. Let us demonstrate it. We will 

consider mental experiments which allow verifying existence of the collapse predicted in GRW. 

Further we will demonstrate that these experiments cannot be used for verification of the 

collapse in the Copenhagen Interpretation. 

 

a. Quantum mechanics, as well as classical, predicts Poincare's returns. And, unlike classical 

chaotic systems, the returns happen periodically or almost periodically. But because of the 

collapse in GRW such returns are impossible and cannot be observed experimentally, i.e. this 

fact can be used for experimental verification. 

b. Quantum mechanics is reversible. At a reversion of evolution the system must return to the 

initial state. However, the collapse results in irreversibility. This fact also can be verified 

experimentally. 
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c. We can observe experimentally the small effects related to the small quantum correlations 

which exist even after decoherence. In GRW this small effects disappear. 

 

    Suppose that we want to verify the collapse of the final observer in the Copenhagen 

Interpretation. Hence, we must include the observer into the observable system, i.e. there is 

introspection here. We will demonstrate that it is impossible to verify (or contravene) existence 

of the collapse in Copenhagen Interpretation by the methods described above: 

 

a. Suppose that the observer waits for the return predicted by quantum mechanics. But the 

observer is included into the system; i.e., at Poincare's return, he will return to his initial state 

together with the entire system. Hence, his memory about his past will be erased. So, the 

observer will not be possible to compare the initial and finite state. It makes the verification of 

the existence (or non-existence) of the observerôs collapse experimentally impossible.   

b. The same reasons as those in item (a.) make impossible the experimental verification of the 

returns caused by the reversion of system evolution. 

c. For observation of the small effects (quantum correlation macrostates), the measuring split-

hair accuracy is necessary. But, as the observer is included into the observed system 

(introspection), it is not possible to make full measurement of such system. (Figuratively 

speaking, the observer uses some "ink" to describe the full system state. But the "ink" is also a 

part of the full system during intersection. So the "ink" must describe also itself!) Such system 

can be described by macroparameters only. It makes impossible experimental observation and 

calculation of the small effects of the quantum correlations. 

 
   As a matter of fact, the first two items (a., b.) are related to a following fact which took place 

also in classical mechanics [1]. Decoherence (decomposition on macrostates) leads to the 

entropy increase (one macrostate is replaced by a full set of possible macrostates). On the other 

hand, observation of the return (i.e. recoherence) is related to the entropy decrease. The observer 

is capable to carry out introspection experimentally only on finite time intervals when it has a 

time arrow (i.e. a state far from the thermodynamic equilibrium), and it does not change its 

direction. Thus, inability to experimentally distinguish the Copenhagen and Multi-world 

Interpretations is closely related to the entropy increase law and the thermodynamic arrow of 

time. 

   Everything from the abovementioned makes impossible to experimentally verify the difference 

between the Copenhagen and Multi-world Interpretation, so they can be regarded as equivalent. 

Such statements about indistinguishability of these interpretations meet in the literature. 

However, in cases when this fact is not just stated but attempts are made to prove it, it is usually 

referred to impossibility to make such verification only practically for macrobodies (FAPP - for 

all practical purposes).  The understanding of its principal impossibility is lacking. This incorrect 

understanding is a basis for erroneous deduction about çexclusivenessè of Multi-world 

Interpretation. We will demonstrate the clearest example [9]: 

 
"MWI proponents might argue that, in fact, the burden of experimental proving lies on 

MWI opponents, because it is they who claim that there is the new physics beyond the well 

tested Schrodinger equation." 

"Despite the definition "interpretation", the MWI is a variant of quantum theory that is different 

from others. Experimentally, the difference is relative to collapse theories. It seems that there is 

no experiment distinguishing the MWI from other no-collapse theories such as Bohmian 

mechanics or other variants of MWI. The collapse leads to effects that are, in principle, 

observable; these effects do not exist if MWI is the correct theory. To observe the collapse, we 

would need a superb technology which would allow "undoing" a quantum experiment, including 

a reversal of the detection process by macroscopic devices. See Lockwood 1989 (p. 223), 

Vaidman 1998 (p. 257), and other proposals in Deutsch 1986. These proposals are all for mental 
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experiments that cannot be performed with current or any foreseen future technology. Indeed, 

interference of different worlds has to be observed in these experiments. Worlds are different 

when at least one macroscopic object is in macroscopically distinguishable states. Thus, what is 

needed is an interference experiment with a macroscopic body. Today there are interference 

experiments with larger and larger objects (e.g., fullerene molecules C60), but these objects are 

still not large enough to be considered "macroscopic". Such experiments can only refine the 

constraints on the boundary where the collapse might take place. A decisive experiment should 

involve the interference of states which differ in a macroscopic number of degrees of freedom: 

an impossible task for today's technology".        

   The given proof of principal experimental unverifiability of collapse in Copenhagen 

Interpretation, as far as we know, can be found only in this and the previous papers [10-13]. It is 

possible to term it as the "Goedel" theorem of impossibility for quantum mechanics. Both its 

statement and its method of its proof really remind ñthe Goedel theorem of incompletenessò. 

     We concentrate on this problem so much here for the following reasons. Firstly, the 

impossibility to experimentally distinguish the Copenhagen and Multi-world Interpretations is 

closely related to the entropy increase law and the thermodynamic arrow of time. Secondly, it is 

too many people sincerely but erroneously believe that Multi-world Interpretation (or other less 

fashionable Interpretations) completely solves all problems of quantum mechanics. Uncertainty 

which was already described above is one of such problems of quantum mechanics. It means that 

quantum mechanics using Bohrôs rules is characterized with small uncertainty connected to 

small quantum correlation of the observer. How are they solved actually? These results can be 

concluded from the fact that the specified uncertainty exist in ideal dynamics over an abstract 

coordinate time. This uncertainty is absent in observable dynamics over the observer's time 

arrow and is not observed experimentally in principle. 

 

1) Introspection. The same reasons already described above which do not allow verifying 

the collapse experimentally will not allow experimental discovery of the uncertainty 

specified in item 1 (the exact instant of the collapse) and item 2 (quantum 

correlations). So, it is senseless to discuss it. 

2) External observation:  

a. If this observation does not perturb the observable system then the collapse of the system and, 

hence, uncertainties [specified in item 1 (the exact instant of the collapse) and item 2 (quantum 

correlations)] do not arise. So, quantum mechanics can be verified experimentally in precise 

way. Such unpertrubative observation is possible for macrobodies only theoretically. The 

necessary condition is a known initial state (pure or mixed) (Appendix A). 

b. The observed system is open. It means that there is a low interaction between the observable 

system and the observer/environment. This low interaction masks uncertainty (specified in points 

1 and 2) and makes impossible its experimental observation. 
 

   Here it is necessary to return to the uncertainty described in item 3. The majority of real 

observations correspond to two cases: the introspection cases (when the full description is 

impossible in principle) or the open system (perturbed with uncontrollable small external noise 

from the observer/environment). How to describe such open or incomplete systems? It is made 

by input of macroparameters of the system. The real observable dynamics of such parameters is 

possible for a wide class of systems. It does not include ñthe parallel worldsò unobservable in 

realities, entropy reduction, quantum superposition of macrostates and other exotic, possible only 

in ideal dynamics. Observable dynamics is considered with respect to the thermodynamic time 

arrow of the real macroscopic non-equilibrium observer, weakly interacting with observable 

system and an environment (decoherence). Ideal dynamics is considered with respect to abstract, 

coordinate time. The problem of the pass from ideal to real dynamics is successfully solved in 

other papers [14-15, 17-18]. Selection of macrovariables is ambiguous, but also is not arbitrary. 

Macrovariables should be chosen so that at entropy increase random small external noise did not 
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influence considerably their dynamics. Such macrovariables exist and are named pointer states 

[3, 17]. Presence of the selected states is a result of interaction locality in the real world. It means 

that close particles interact stronger than far particles. If the force of interaction were defined, for 

example, by closeness of momentums the principal states would be absolutely different. So, the 

property of a locality is untrue over distances comparable with wave length. So, radio waves 

have field pointer states, strongly differing from particles pointer states. The situation described 

here is completely equivalent to [1] where "appropriate" macrostates for classical mechanics 

were considered. 

   What can be an example of observable dynamics for quantum systems? These are the 

described above GRW theories. To understand it, we will return to the Copenhagen 

Interpretation. We can choose different non-equilibrium macrobodies as "the final observer" in 

the Copenhagen Interpretation. Theoretically, the collapse in this case will be seen differently for 

such different observers. This appearance is named ñparadox of Wignerôs friendò. This 

appearance of ambiguity of the collapse in the Copenhagen Interpretation can be named 

ñQuantum solipsismò. It is named by analogy to the similar philosophical doctrine. This problem 

can be resolved similarly to the paper [1]. The entropies of all weakly interacting macrobodies 

increase or decrease synchronously, because of alignment of thermodynamic time arrows. The 

collapse corresponds to entropy increase (one macrostate replaces on a set of possible 

macrostates). Hence, low interaction (decoherence) between macrobodies yields not only 

alignment of thermodynamic time arrows but also sync of all moments of ñcollapseò for different 

observers. It makes ñQuantum solipsismò for macrobodies although theoretically possible but 

extremely difficult to be realized in practice. Thus, this resolution of ñQuantum solipsismò by the 

collapses differs from Copenhagen Interpretation where the observer's collapse cannot be 

prevented even theoretically. Thus, the GRW theories described above are the description of the 

real observable dynamics of macrobodies (FAPP dynamics) for quantum mechanics. It throws 

out effects not observed in reality. It is, for example, non synchronism in the macrobodies 

collapses moments and entropy decrease that are predicted by ideal dynamics.   

        ñThe paradox of a kettle which will never begin to boilò can serve as a good illustration of 

the abovementioned connection of observed and ideal types of dynamics. In quantum mechanics, 

it is related to a deviation from the exponential law of particles decay (or a pass from one energy 

level on another). The exponential character of such law is very important ï the relative rate of 

decay does not depend on an instant. It means that the decaying particle has no "age". In 

quantum mechanics, however, in small lengths of time the law of ideal dynamics of decay 

strongly differs from the exponential law. So, when the number of measurements of a decaying 

particle state for finite time interval increases the particle in limit of infinite number of 

measurements does not decays at all!  

   Let us observe a macrosystem consisting of large amount of decaying particles. Here it is 

necessary to note that decay of a particle happens under laws of ideal dynamics only between 

measurements. Measurements strongly influence dynamics of the system, as we described above. 

To transfer to the observable dynamics featured above, we should decrease perturbing influence 

of observation strongly. It is reached by increasing the interval between observations. It must be 

comparable with a mean lifetime of unperturbed particles. For such large intervals of time, we 

get real observable dynamics of decay. It is featured by an exponential curve, and the mean 

lifetime does not depend on a concrete interval between measurements. Thus, the exponential 

decay is a law of observable but not of ideal dynamics of particles. (The same reason explains 

absence of Poincare's returns for this system).  

 

3. The quantitative consideration of the problem 
 

3.1  Definition of the basic concepts 
 



 28 

1) In classical mechanics a microstate is a point in a phase space. In quantum mechanics it 

corresponds to a wave function ɣ (a pure state), and trajectories are evolution of a wave 

function in time. In classical mechanics a macrostate corresponds to a function of density 

distribution in a phase space. In quantum mechanics it corresponds to a density matrix ɟ. The 

density matrix form depends on the chosen basis of orthonormal wave functions. If ɟɟÍɟ 

then it is in mixed state.   
2) The equation of motion for the density matrix r will have the following form: 

,L
t

i N
N r
r
=

µ

µ
 

where L is the linear operator: 
L ɟ = H ɟ - ɟ H = [H, ɟ] 
and H is the energy operator of the system, 
N is a number of particles 
3) If A is the operator of a certain observable, then the average value of the observable can be 

found as follows: 
<A> =tr A ɟ 

4) If the observation is introspection the full observation is impossible. In case of external 

observation because of low interaction with the observer and instabilities of an observable 

chaotic system the full exposition also is senseless. Therefore, introducing some finite set M 

of macrovariables is necessary: 
Aset = {A1, A2, é, AM}, 

Where M <<N  
These macrovariables are known with finite small errors: 
       ȹAi <<A i, 1ÒiÒM 
   This set of macrovariables corresponds to a macrostate with a density matrix ɟset. 
All microstates answering to requirements 

{| <A1> - A1 | Ò ȹA1, | <A2> - A2 | Ò ȹA2, é, | <AM> - AM | Ò ȹAM} 
 are assumed to have equal probabilities. 
     Corresponding to thermodynamic equilibrium is a macrostate ɟE. It corresponds to a set of 

microstates satisfying to the following requirement:  
| <E> - E | Ò ȹ E (ȹ E <<E ), 
where E is the full system energy. 
All these microstates are assumed to have equal probabilities. 
5) In quantum mechanics ensemble entropy is defined via density matrix [15]: 

S =-k tr (ɟ ln ɟ),  
where tr stands for matrix trace. 
Entropy defined in such a way does not change in the course of reversible evolution: 

0=
µ

µ

t

S

 
6) Macroscopic entropy is defined as follows: 

a) For current ɟ we find all corresponding sets of macrovariables  

 

{ }

{ }î
í

î
ì

ë

¢¢<<=

¢¢<<=

Mi,AAA...,A,AA

Mi,AAA...,A,AA

)L(

i

)L(

i

)L(

M

)L()L()L(

set

)(

i

)(

i

)(

M

)()()(

set

1

1

21

1111

2

1

1

1

D

D

4

 
b) We find a matrix ɟset for which all microstates corresponding to the specified set of 

macroparameters have equal probabilities 
c) Macroscopic entropy S =-k tr (ɟset ln ɟset) 

Unlike ensemble entropy, macroscopic entropy (macroentropy) is not constant and can both 

increase and decrease in time. For given energy E Ñ ȹE it reaches its maximum for 
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thermodynamic equilibrium. The direction of the macroentropy increase defines the direction of 

a thermodynamic arrow of time for the system. 
7) Similarly to the classical case, the interaction locality results in the fact that not all 

macrostates are appropriate. They should be chosen so that small noise would not influence 

essentially evolution of the system for the entropy increase process. Such states are well 

investigated in quantum mechanics and named pointer states [3, 17]. Quantum superposition 

of such states is unstable with respect to small noise.  So such superposition is not, 

accordingly, a pointer state. For macrosystems close to the equilibrium pointer states are 

usually corresponding to Hamiltonian eigenfunctions. 
8) Coarsened value of r (ɟcoar) should be used to obtain changing entropy similarly to changing 

macroscopic entropy. We will enumerate ways to achieve it: 
a) We define a set of pointer states and we project a density matrix r on this set. I.e. (a) we 

note a density matrix r in representation of these pointer states (b) we throw out non-

diagonal terms of  r  and obtain ɟcoar. So entropy:  

       S=-k tr (ɟcoar ln ɟcoar) 
b) We divide the system into some interacting subsystems (for example: the observer, the 

observable system and the environment). Then we define the full entropy as the sum of 

the entropies of these subsystems: 
           S=Sob+Sob_sys+Senv 

 

3.2 Effect of a weak coupling 

 
3.2.1 Small external perturbation 

 
We can put our macrosystem of finite volume inside of an infinite volume system 

("environment", "reservoir") with some temperature. (This reservoir can be also a vacuum with 

zero temperature.) We will suppose that this reservoir is in thermodynamic equilibrium, has the 

same temperature as a temperature of the finite system in equilibrium and weakly interacts with 

our finite system. Then it is possible to use the quantum version of "new dynamics" developed 

by Prigogine [14] for such infinite systems. Dynamics of our finite system with a reservoir will 

be the same as its observable dynamics without a reservoir with respect to its thermodynamic 

time arrow. Such description has sense only during finite time. It is time when its 

thermodynamic time arrow exists (i.e. the system is not in equilibrium) and does not change its 

direction. 

 

3.2.2 Alignment of thermodynamic time arrows at interaction of 

macrosystems (the observer and the observable system) 

 
       It ought to be noted that here our job is much easier than in the case of classical mechanics. 

This is due to the fact that the quantitative theory of small interaction between quantum systems 

(decoherence, entangling) is a well developed field [2-3, 17, 24-27]. We will not repeat these 

conclusions here but just give short results only: 

  (a) Suppose that we have two macrosystems for some instant. One or both of them are in their 

quantum superposition of pointer states. The theory of decoherence [2-3, 17, 24-27] states that 

small interaction between macrosystems (decoherence time is much less than relaxation time to 

equilibrium) transforms such system into the mixed state very fast in which the quantum 

superposition disappears. Such process of vanishing quantum superposition of pointer states 

corresponds to the entropy increase. It follows from Poincareôs theorem that the system (in 

coordinate time) should return to its initial state. There should be an inverse process of 

recoherence. But it will happen in both systems synchronously. It means that any system can see 

only decoherence and entropy increase with respect to its thermodynamic time arrow. It means 
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that both processes decoherence and time arrows will be synchronous in interacting subsystems. 

It is especially worthy of note that we consider here a case of macroscopic systems. For small 

systems where large fluctuations of parameters are possible, similar alignment of thermodynamic 

time arrows and the instances of ñcollapsesò for subsystems is not observed [6-7]. 

     (b) Now suppose that all macroscopic subsystems are in their pointer states. In the 

decoherence theory it is shown that in presence of small noise between its macroscopic 

subsystems the behavior of a quantum system is completely equivalent and is indistinguishable 

from behavior of the correspondent classical system [2-3, 17 , 24-27]. Thus, the analysis of 

alignment of thermodynamic time arrows is completely equivalent to the analysis made in paper 

[1].  

     (c) It is worth to specify what the meaning of ñclassical systemò is in this case.  

It means that in the theory there do not exist specific mathematical features of quantum theory. 

They are, for example, such features as not commuting observables, quantum superposition of 

pointer states. At that, these "classical theories" can be very exotic, include Planckôs constant and 

are not reduced to laws of the known mechanics of macrobodies or waves. 

      Superconductivity, superfluidity, radiation of absolute black body, and superposition of 

currents in Friedmanôs experiment [19] are often named "quantum effects". They are really 

quantum in the sense that their equations of motion include Planckôs constant. But they are 

perfectly featured over macroscale by a mathematical apparatus of usual classical theories: either 

the theory of classical field (as pointer states), or the theory of classical particles (as pointer 

states). From this point of view, they are not quantum but classical. In quantum theory, featured 

objects both are particles and probability waves at the same time. 

        It is worth to note that in the classical limit, at room temperatures, quantum mechanics of 

heavy-weighed particles gives the theory of classical particles as pointer states (electron beams, 

for example). On the other hand, light-weighted particles give the classical field as pointer states 

(radiowaves). And these theories do not include Planckôs constant. 

     However, at high temperatures when radiation achieves high frequencies, light quanta are 

featured by the theory of classical particles as pointer states. They give, for example, a spectrum 

of absolute black body on high frequencies. Though this spectrum includes Planckôs constant its 

dynamics of pointer states (particles) will be classical. For deriving this spectrum the quantum 

mechanics formalism is not necessary (Planck derived this spectrum knowing nothing about the 

mathematical apparatus of quantum physics). 

       Vice versa, at low temperatures the particles start to be featured by classical fields as pointer 

states (superfluidity or superconductivity phenomena). For example, superconductivity is 

featured by classical wave of "order parameter". And though the equations which feature this 

field include Planckôs constant, yet the equations correspond to mathematical apparatus of the 

classical field theory. These waves can be summed (superposed) with each other similarly to 

quantum waves. But the square of their amplitude does not define probability density. It defines 

density of Cooper pair. Such wave cannot collapse at measurement, as probability quantum 

waves can [20]. 

     For quantum-mechanical states of bosons at low temperatures, pointer states are classical 

fields, and at high temperatures they are classical particles. The word "classical" is understood as 

a mathematical apparatus of the observable dynamics featuring their behavior, but not presence 

or absence of Planckôs constant in their equations of motion. 

     What happens in the intermediate states between classical fields and classical particles? It is, 

for example, light in an optical wave guide (L>> ɚ>> ɚultraviolet), Lopt - the characteristic size of 

the macrosystem (the optical wave guide) (Appendix B), ɚ - light-wave length, ɚultraviolet- ultra-

violet boundary of light). When using macroscales and macrovariables, and taking into account 

small noise from the observer, both descriptions (ñclassical wavesò and ñclassical beam of 

particlesò) are identical. They are equivalent and can be used as pointer states. The equivalent 

situation arises for a case of superconductor where the roles of particles or waves play elemental 

"excitations" in gas of Cooper pairs. 
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     Let's carry out a simple calculation to illustrate the said above.  

Let E be energy of particle; k -Boltzmann constant, T-temperature, p - momentum, ȹp - 

momentum uncertainty, ɚ - particle wave length, ɤ-frequency, ȹx - a coordinate uncertainty;  ˂- 

Planck constant. We will consider the "gas" of such particles which is in a cavity, filled with 

some material with distance between atoms a. a <<L, L - the characteristic size of the cavity. In 

vacuum a ~ (L
3
/N) 

ӎ
, N-number of particles in the cavity. c - speed of light (let suppose for 

simplicity that refraction index in the cavity is close to 1). 

     

1) Firstly, let us consider light in weight particles which at room temperature have the speed 

close to speed of light c.  

E~pc; E~kT; p ~ȹp; ɚ ~ȹx; ȹpȹx ~ ;˂ ɤ =E/  ˂

Hence, 

˂ ~ ȹpȹx ~ pɚ ~ kTɚ/c => ɚ ~ ˂c/kT 

Condition of classical field approach with frequency ɤ ~c/ɚ: 

L <ɚ or L ~ ɚ. Hence L < c˂/kT or L~ c˂/kT 

Condition of approach of classical relativistic particles with E~ c˂/ɚ and p=E/c: 

L>> ɚ. Hence, L>> c˂/kT 

 

2) Secondly, let us consider heavy particles bosons which at room temperature have the speed 

v<<c 

p 
~ 

(Em)
İ
; E~kT; p ~ ȹp; ɚ ~ ȹx; ȹpȹx ~ ;˂ ɤ =E/  ˂

Hence, 

 ˂~ ȹpȹx ~ pɚ ~ (kTm)
İ
ɚ => ɚ~  ˂/(kTm)

İ
   

Condition of classical field approach with frequency ɤ =p
2 

/(m )˂: 

L <ɚ or L ~ ɚ. Hence L <  ˂/(kTm)
İ
 or  ~ /˂(kTm)

İ
   

Condition of approach of classical particles with energy E=p
2
/(2m) and momentum p=mv: 

L>> ɚ. Hence, L>> /˂(kTm)
İ
  

 

3) Let us consider now heavy particles fermions which at room temperature have the speed v <<c 

p 
~ 

(Em)
İ
; E~kT; p ~ȹp; ȹpȹx ~  ˂

ȹx Òɚ and  

ɚÒa is a requirement of Pauliôs principle for fermions. They cannot appear in the same state, so 

they are distributed in "boxes" with size a. 

Hence, 

 ˂~ ȹpȹx Ò pɚ ~ (kTm)
İ
ɚ => a ÓɚÓ ˂/(kTm)

İ
   

TÓTF = ˂
2
/(a

2
km) ï Fermiôs temperature when fermion gas transfers in the basic state and 

expression E~kT becomes untrue. 

At T <TF: E~EF=kTF; ɚ~ /˂(EFm)
İ
~ a   

Requirement of classical field approach: 

L <ɚ or L~ɚ. It is impossible! L>> a Óɚ 

Requirement of approach of classical particles in quality pointer states with energy E=p
2
/(2m) 

and momentum p=mv at TÓTF.  

Requirement of approach of classical particles in quality pointer states, prisoners in çboxesè 

with size a, with energy E~EF and momentum p
~ 

(EFm)
İ
 at TÒTF. 

At T~TF we observe dynamics of ñexcitationsò in the degenerated Fermi gas which is featured 

by particles or waves as pointer states for these ñexcitationsò. 

      To create the paradox of ñSchrodinger catò in experiment, the quantum superposition of the 

pointer states is necessary, instead of superposition of classical waves. Therefore, superposition 

of classical waves of "order parameter" or light waves is not related in any way to this paradox 

and does not illustrate it. 

      So, for example, experiments of Friedman [19] state a superposition of opposite currents. But 

the superposition is itself a pointer state for this case. This pointer state is classical, not quantum 
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superposition of pointer states, as it is usually erroneously declared. Really, the state of bosons 

system (Cooper pairs) is featured at such low temperature by a classical wave as it was 

demonstrated above. These waves of "order parameter" are pointer states. They differ from 

pointer states of a high-temperature current of classical particles having a well-defined direction 

of motion. The superposition observed in Friedmanôs experiment is not capable to collapse to 

quantum-mechanical sense: its square features not probability but density of Cooper pairs [20]. It 

is not more surprising and not more "quantum" than usual superposition of electromagnetic 

modes in the closed resonator where spectrum of modes is discrete too. The only difference is 

that "order parameter" wave equations for pointer states include .˂ It is the only reason to use 

concept of "quantum" for this case. 

 

3.3 Resolution of Loshmidt and Poincare paradoxes in framework 

of quantum mechanics 
 

The state of a quantum chaotic system in a closed cavity with finite volume is featured by a set 

of energy modes uk (r1, é, rN) with spectrum Ek distributed under the random law [8]. 

Letôs write the expression for wave functions of a non-interacting pair of such systems: 
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The united equation is following: 

 

ää
+

-

==

k

t
)EE(i

LlNk

l

L

)(

N

)(

LN

)(

)(
l

)(
k

e),...,(v),...,(u

)t,,...,()t,,...,()t,,...,,,...,(

>

21

11

1

2

1

1

11

1

rrrr

rrrrrrrr yyy

 
 

At presence of small interactions between the systems 
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, ɋkl-generally a set of random variables, fkl, uk, vl are eigenfunctions 

of corresponding Hamiltonians. 
    The obtained solutions are almost-periodic functions. The obtained period of return defines 

Poincare's period. The period of Poincareôs return of full system is generally larger than periods 

of the both subsystems.  

  For resolution of Poincare and Loshmidt paradoxes (returns in these paradoxes contradict to 

entropy increase law) we will consider three cases now.  

1) Introspection: At introspection the time the arrow is always directed over entropy growth, so 

the observer is capable to see only entropy growth with respect to this time arrow. Besides, 

return to the initial state erases the memory about the past. It does not allow the observer to 

detect entropy reduction. Thus, reduction of entropy and returns happen only with respect 

to coordinate time. But any experiment is possible with only with respect to time arrow of 
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the observer. With respect to coordinate time entropy reduction and returns cannot be 

experimentally observed [1, 10-13].  

2) External observation with small interaction between macrosystems: Small interaction 

results in alignment of the thermodynamic time arrows of the observer and observed 

systems. Accordingly, all arguments that are relevant for introspection again become 

relevant for this case. 

3) For a very hardly realizable experiment with unperturbative observation (Appendix A) 

macroentropy reduction can really be observed. However, it is worth to note that in the real 

world "entropy costs" on the experimental organization of such unperturbative observations 

will exceed considerably this entropy decrease. Indeed, the observable system needs to be 

isolated very strongly from environment noise. 

 

    In classical systems the period of Poincareôs return is a random variable strongly depending on 

an initial state. In quantum chaotic systems the period is well defined and does not depend 

considerably on the initial state. However, this real difference in behavior of quantum and 

classical systems is not observed experimentally even in absence of any explicit constraint on 

experiment time. Indeed, any real physical experiment has a duration that is much smaller than 

Poincareôs period of macrobodies. Physical experiments are possible only during the time while 

the thermodynamic time arrow exists (i.e. the system is not in a state of thermodynamic 

equilibrium) and does not change the direction. 

 

3.4 Decoherence for process of measurement 
 

3.4.1 Reduction of system at measurement [22-23]. 
 

Letôs consider a situation when a measuring device was at the beginning  in state | Ŭ0 ü, and the 

object was in superposition of states |ɣü = ×ci|ɣiü, where | ɣiü 
-
  are experiment eigenstates. The 

initial statistical operator is given by expression 

ɟ0=|ɣü|Ŭ0üûŬ0|ûɣ|                                                                                                                             (1) 

     The partial track of this operator which is equal to statistical operator of the system, including 

only the object, looks like 

trA(ɟ0)=×nûűn|ɟ0|űnü        

where | űn ü- any complete set of device eigenstates. Thus, 

trA(ɟ0)=× |ɣü ûűn|Ŭ0üûŬ0|űnüûɣ|=|ɣüûɣ|,                                                                                         (2) 

Where the relation × | űn üû űn | = 1 and normalization condition for | Ŭ0 ü are used. We have 

statistical operator correspondent to object state | ɣü. After measuring  there is a correlation 

between device and object states, so the state of full system including device and object is 

featured by a state vector 

|Ɋü=×cie
iɗi

|ɣiü|Ŭ0ü|.                                                                                                                         (3) 

And the statistical operator is given by expression 

ɟ0=|ɊüûɊ|=×cicj
*
e

i(ɗi-ɗj)
|ɣiü|ŬiüûŬj|ɣjü.                                                                                                      

(4) 

The partial track of this operator is equal to 

 trA(ɟ)=×nûűn| ɟ |űnü |= 

=×(ij)cicj
*
 e

i(ɗi-ɗj)
 |ɣiüûűn |ŬiüûŬj|űnüûɣj|= 

=×(ij)cicj
*
ŭij |ɣiüûɣj|                                                                                                         (5) 

 (Since various states | Ŭi ü of device are orthogonal each other); thus, 

trA(ɟ)=×|ci|
2
|ɣiüûɣi|.                                                                                                                       (6) 

We have obtained statistical operator including only the object, featuring  probabilities |ci|
2 

for 

object states | ɣi ü. So, we come to formulation of the following theorem. 

Theorem 1 (about measuring). If two systems S and A interact in such a manner that to each 

state | ɣi ü systems S there corresponds a certain state | Ŭiü of systems A the statistical operator trA 
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(ɟ) over full systems (S and A) reproduces wave packet reduction for measuring, yielded over 

system S, which before measuring was in a state | ɣ ü= ×ici | ɣ iü. 
 

Suppose that some subsystem is in mixed state but the full system including this subsystem is in  

pure state. Such mixed state is named as improper mixed state. 

 

3.4.2 The theorem about decoherence at interaction with the macroscopic 

device. [18, 84] 
 

Letôs consider now that the device is a macroscopic system. It means that each distinguishable 

configuration of the device (for example, position of its arrow) is not a pure quantum state. It 

states nothing about a state of each separate arrow molecule. Thus, in the above-stated reasoning 

the initial state of the device | Ŭ0 ü should be described by some statistical distribution on 

microscopic quantum states | Ŭ0, sü; the initial statistical operator is not given by expression (1), 

and is equal 

ɟ0=×sps|ɣ ü| Ŭ0, sü ûŬ0, s |û ɣ |.                                                                                                           (7) 

Each state of the device | Ŭ0, s ü will interact with each object eigenstate | ɣiü. So, it will be 

transformed to some other state | Ŭi, s ü. It is one of the quantum states of set with macroscopic 

description correspondent to arrow in position i; more precisely we have the formula  

ʝ
iHŰ/˂

(|ɣü| Ŭ0, sü) =ʝ
iɗi, s 

| ɣ ü| Ŭi, sü.                                                                                                      (8) 

 

Let's pay attention at appearance of phase factor depending on index s. Differences of energies 

for quantum states | Ŭ0, s ü  should have such values that phases ɗi, s (mod 2 )́ after time Ű would be 

randomly distributed between 0 and 2 .́ 

From formulas (7) and (8) follows that at |ɣü= ×ici|ɣiü the statistical operator after measuring will 

be given by following expression: 

ɟ=×(s,i,j) pscicj
*
 e

i (ɗi, s - ɗ j, s)
 | ɣi ü| Ŭi, sü ûŬj, s |û ɣ j |                                                                             (9) 

As from (9) the same result (6) can be concluding. So we see that the statistical operator (9) 

reproduces an operation of reduction applied to given object. It also practically reproduces an 

operation of reduction applied to device only ("practically" in the sense that it is a question about 

"macroscopic" observable variable). Such observable variable does not distinguish the different 

quantum states of the device corresponding to the same macroscopic description, i.e. matrix 

elements of this observable variable  correspondent to states | ɣi ü| Ŭi, sü and | ɣj ü| Ŭj, sü do not 

depend on r and s. Average value of such macroscopic observable variable A is equal to 

tr (ɟA) = × (s, i, j) pscicj
*
 e

i (ɗi, s - ɗ j, s)
 ûŬj, s |û ɣ j|A | ɣ i ü| Ŭi, sü = 

=×(i,j)cicj
*
ai,j×spse

i(ɗi,s-ɗj, s)
                                                                                                             (10) 

As phases ɗi, s are distributed randomly, the sum over s are zero at iÍj; hence, 

tr(ɟA)=×|ci|
2
aii=tr(ɟ'A).                                                                                                               (11) 

where 

ɟ'=×|ci|
2
ps | ɣ i ü| Ŭi, sü ûŬi, s |û ɣ i |                                                                                               (12) 

We obtain statistical operator which reproduces operation of reduction on the device. If the 

device arrow is observed in position i, the device state  for some s will be | Ŭi, s ü. The probability 

to find state | Ŭi, sü is equal to probability of that before measuring its state was | Ŭi, s ü. Thus, we 

come to the following theorem. 

Theorem 2. About decoherence of the macroscopic device. Suppose that the quantum system 

interacts with the macroscopic device in such a manner that there is a chaotic distribution of 

states phases of the device. Suppose that ɟ is a statistical operator of the device after the 

measuring, calculated with the help of Schrodinger equations, and ɟ' is the statistical operator 

obtained as a result of reduction application to operator ɟ. Then it is impossible to yield such 

experiment with the macroscopic device which would register difference between ɟ and ɟ '.  

It is the so-called Daneri-Loinger-Prosperi theorem [21]. 

For a wide class of devices it is proved that the chaotic character in distribution of phases 

formulated in the theorem 2  really takes place if the device is macroscopic and chaotic with 
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unstable initial state. Indeed, randomness of phase appears from randomness of energies 

(eigenvalues of Hamiltonian) in quantum chaotic systems [8]. 

        It is worth to note that though Eq. (12) is relevant with a split-hair accuracy it is only 

assumption with respect to (9). There from it is often concluded that the given above proof is 

FAPP. It means that it is only difficult to measure quantum correlations practically. Actually 

they continue to exist. Hence, in principle they can be measured. It is, however, absolutely 

untruly. Really, from Poincareôs theorem about returns follows that the system will not remain in 

the mixed state (12), and should return to the initial state (7). It is the result of the very small 

corrections (quantum correlation) which are not included to (12). Nevertheless, the system 

featured here | Ŭi, s ü corresponds to the introspection case, and consequently, it is not capable to 

observe experimentally these returns in principle (as it was shown above in resolution of 

Poincare and Loshmidt paradoxes). Hence, effects of these small corrections exist only on paper 

in the coordinate time of ideal dynamics, but it cannot be observed experimentally with respect 

to thermodynamic time arrow of observable dynamics of the macroscopic device. So, we can 

conclude that Daneri-Loinger-Prosperi theorem actually results in a complete resolution (not 

only FAPP!) of the reduction paradox in principle. It proves impossibility to distinguish 

experimentally the complete and incomplete reduction. 

     The logic produced here strongly reminds Macconeôs paper [4]. It is not surprising. Indeed, 

the pass from (7) to (12) corresponds to increasing of microstates number and entropy growth. 

And the pass from (12) in (7) corresponds to the entropy decrease. Accordingly, our statement 

about experimental unobservability to remainder quantum correlation is equivalent to the 

statement about unobservability of the entropy decrease. And it is proved by the similar methods, 

as in [4]. The objection [6] was made against this paper. Unfortunately, Maccone could not give 

the reasonable replay [28] to this objection. Here we will try to do it ourselves. 

      Letôs define here necessary conditions. 

Suppose A is our device, and C is the measured quantum system. 

The first value, the mutual entropy S (A: C) is the coarsened entropy of ensemble (received by 

separation on two subsystems) excluding the ensemble entropy. As the second excluding term is 

constant, so S (A: C) describes well the behavior of macroentropy in time: 

S (A: C) = S (ɟA) + S (ɟC)  S (ɟAC), 

Where S = - tr (ɟ ln ɟ),  

The second value I (A: C) is the classical mutual information. It defines which maximum 

information about measured system (Fj) we can receive from indication of instrument (Ei). The 

more correlation exists between systems, the more information about measured system we can 

receive:  

I (A: C) = maxEi FjH (Ei:Fj), where 

H (Ei: Fj) = ɆijPij log Pij Ɇ ipi log pi Ɇ jqj log qj  

and Pij = Tr [ Ei  FjɟAC], pi = Ɇj Pij  and qj = Ɇi Pij 

given POVMs (Positive Operator Valued Measure) Ei and Fj for A and C respectively. 

Maccone [4] proves an inequality 

S (A: C) Ó I (A: C) (13) 

He concludes from it that entropy decrease results in reduction of the information (memory) 

about the system A+C and C. 

But (13) contains an inequality. Correspondingly in [6] an example of the quantum system of 

three qubits is supplied. For this system the mutual entropy decrease is accompanied by mutual 

information increases. It does not contradict to (13) because mutual entropy is only up boundary 

for mutual information there.  

Letôs look what happens in our case of the macroscopic device and the measured quantum 

system 

Before measurement (7) 
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S (A: C) =  - ×sps log ps +0 +  ×sps log ps=0 

 

Ei-corresponds to the set | Ŭ0, s ü, Fj - | ɣü 

I (A: C) =  - ×sps log ps +0 +  ×sps log ps=0 = S (A: C) 

In the end of measurement from (12)  

S (A: C) =  - ×i|ci|
2
 log |ci|

2
 - ×s, i|ci|

2
ps log |ci|

2
ps + ×s, i|ci|

2
ps log |ci|

2
ps =  - ×i|ci|

2
 log |ci|

2
 

 

Ei-corresponds to the set | Ŭi, s ü, Fj - | ɣjü 

I (A: C) =  - ×i|ci|
2
 log |ci|

2
 - ×s, i|ci|

2
ps log |ci|

2
ps + ×s, i|ci|

2
ps log |ci|

2
ps =   

- ×i|ci|
2
 log |ci|

2 
= S (A: C) 

   Thus, our case corresponds to 

I (A: C) = S (A: C)                                                                                                                       (14) 

 in (13). No problems exist for our case. It is not surprising ï the equality case in (13) 

corresponds to macroscopic chaotic system. The system supplied by the objection [6] is not 

microscopic. It demonstrates the widely known fact that such thermodynamic concepts as the 

thermodynamic time arrows, the entropy increase and the measurement device concern to 

macroscopic chaotic systems. Both the paper [6] and the subsequent paper [7] describe not 

thermodynamic time arrows but, mainly, strongly fluctuating small systems. No thermodynamics 

is possible for such small systems as three cubits. The useful outcome of these papers is equality 

(14). It can be used as a measure for macroscopicity of chaotic quantum systems. On the other 

hand, the difference between mutual information and mutual entropy can be a criterion of 

fluctuations value. 

 

4. Conclusion 
 

     In this paper the analysis of thermodynamic time arrow in quantum mechanics is presented. It 

is in many aspects similar to the classical case. The important difference of quantum systems 

from classical ones is that one microstate in quantum mechanics can correspond not to one 

macrostate but to a set of macrostates. It is referred to as quantum superposition of macrostates. 

For this case considering thermodynamic time arrow by means of the decohernce theory gives 

resolution of the quantum paradoxes. These paradoxes relate to a wave packet reduction 

(collapse). 

 

Appendix A. Unpertrubative observation in quantum and classical 

mechanics 
 

       It is often possible to meet a statement that in classical mechanics, in principle, it is always 

possible to organize unpertrubative observation. On the other hand, in quantum mechanics 

interaction of the observer with the observable system at measurement is inevitable. We will 

show that both these statements are generally untrue. 

         Let us first define the nonperturbative observation [10-11, 30-31] in QM. Suppose we have 

some QM system in a known initial state. This initial state can be either a result of some 

preparation (for example, an atom comes to the ground electronic state in vacuum after long 

time) or a result of a measurement experiment (QM system after measurement can have a well 

defined state corresponding to the eigenfunction of the measured variable). We can predict 

further evolution of the initial wave function. So in principle we can make further measurements 

choosing measured variables in such a way that one of the eigenfunctions of the current 

measured variable is a current wave function of the observed system. Such measuring process 

can allow us the continuous observation without any perturbation of the observed quantum 

system. This nonperturbative observation can be easily generalized for the case of a known 

mixed initial state. Really, in this case the measured variable at each instant should correspond to 
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such set of eigenfunctions that the density matrix in representation of this set at the same instant 

would be diagonal. 

     For example, let us consider some quantum computer. It has some well-defined initial state. 

An observer that known this initial state can in principle make the nonperturbative observation 

of any intermediate state of the quantum computer. 

    It is especially worth to note that such unpertrubativʝ observation is possible only under 

condition of a known initial state. But an observer that doesnôt know the initial state can not 

make such observation because he cannot predict the intermediate state of the quantum 

computer. 

     Letôs consider now classical mechanics. Suppose that a grain of sand lies on a cone vertex. 

The grain of sand has infinitesimally small radius. The system is in the Earth field of gravity. 

Then attempt to observe system even with infinitesimal perturbation will lead to misbalance with 

the indefinite future through a terminating interval of time. Certainly, the reduced example is 

exotic ï it corresponds to a singular potential and an infinitesimal object. Nevertheless, similar 

strongly labile systems are good classical analogues of quantum systems. Among them it is 

possible to search for analogies of quantum systems and quantum paradoxes. Having introduced 

a requirement that classical measuring renders very small but not zero perturbation on measured 

system, it is possible to lower requirements to a singularity of these systems.  

    Very often examples of "purely quantum paradoxes" can be met which do not ostensibly have 

analogy in classical mechanics. One of them is Elitzur-Vaidman paradox [29] with a bomb 

which can be found without its explosion: 

     Suppose that the wave function of one light quantum branches on two channels. In the end 

these channels of the waves again unite, and there is an interference of the two waves of 

probability. A bomb inserted into the one from the two channels will destroy the process of 

interference. Then it allows us to discover the bomb even for a case when the light quantum 

would not detonate it, having transited on other channel. (The light quantum is considered 

capable to detonate the bomb) 

      Classical analogy of this situation is the following experiment of classical mechanics: 

     In one of the channels where there is no bomb we throw in a macroscopic beam of many 

particles. In other channel where, maybe, there is the bomb, we will throw in simultaneously 

only one infinitesimally light particle. Such particle is not capable to detonate the bomb but it 

may be thrown back out of it. If the bomb is not present the particle will transit the channel. On 

the exit of this channel for the bomb we will arrange the cone featured above with the grain of 

sand with infinitesimal radius on the cone vortex. If our infinitesimally light particle would 

throw down the grain of sand from the vertex it means that the bomb is not present. If the grain 

of sand would remains on the vertex after exit of particles beam from the second channel it 

means that the bomb is present.   

      In the given example infinitesimally light particle is an analogue of an "imponderable" wave 

function of the light quantum. But the light quantum is sensitive to behavior of this 

"imponderable" wave function. Equally, the grain of sand with infinitesimal radius on the cone 

vertex is sensitive with respect to infinitesimally light particle.  

   Summing up, it is possible to say that the difference between quantum and classical systems is 

not as fundamental as it is usually considered. 

 

Application B.  Expansion on modes at arbitrary boundary 

conditions 
 

      Encountered quite often is a problem of description of radiation in a closed cavity filled by 

some substance. Usually it appears by decomposition of radiation on modes. These modes are a 

set of eigenfunctions of the wave equation for some cavity and for some boundary conditions. 

For example, it is a square cavity with periodical boundary conditions. Then the received 

radiation decomposition is substituted to the wave equation for radiation. There the modes of the 
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series are differentiated termwise. Thus, such radiation feature as ɤ (k) is received. Here ɤ is 

frequency of a mode; k is a mode wave vector; |k | =2 /́ɚ; ɚ is a mode wave length. 

        But here there is a purely mathematical problem. Suppose that the modes have been 

discovered for some shape of the cavity and for some boundary conditions. For termwise 

differentiability uniform convergence in all points of space is required. It is automatically true 

for any radiation with the same shape of a concavity and boundary conditions as modes. But for 

any other case it is not true. Modes are the full orthogonal set and any radiation may be presented 

as superposition of such modes. But generally the series converges nonuniformly (the series 

converges badly near cavity boundaries) and can not be termwise differentiable. The problem of 

possible necessity using different modes for different boundary conditions is discussed in 

Peierlsôs book [32]. However, a case is considered there when some complete orthonormal set of 

modes exists for given boundary conditions. But the situation is possible that for such boundary 

condition no set of such modes is possible. Or the boundary conditions are not known, and only 

energy requirements on boundary are known. How can the problem be solved for such cases? 

      The point is that all perturbations in radiation are expanding with a velocity which is not 

exceeding the speed of light in cavity v=c. It means that any perturbation of initial conditions of 

radiation expands from a point x to a point x1 only over finite time (x-x1)/c. It means that 

perturbations from walls will reach the centre of the cavity in time t=L/c, where L is a 

characteristic size of the cavity. Non-uniform convergence appears only near the cavity walls. So 

inside the cavity far from walls the exact radiation field is almost precisely equal to the modes 

series during time L/c. Therefore, this field has uniform convergence and can be termwise 

differentiable during time L/c.      

    To estimate correctly frequency of a mode ɤ (k) it is necessary that its amplitude does not 

change essentially from walls perturbation over time t>>T. T=2 /́ɤ(k) is time period of the 

mode. There from we receive the requirement of cavity macroscopicity: 

 

2 /́ɤ <<L/c 

 

or  

 

L>> 2 (́c/ɤ)   

 

ɤ - correspondent to maximum of frequencies ɤ(k). 

 

Let suppose that this condition is fulfilled. 

   It means that termwise differentiation of modes far from concavity walls can be made over 

timescales t<2 /́ɤ=L/c. 

    On timescales t>L/c the outcome cannot be correct. Here the energy conservation law and the 

entropy increase law are usually used. By means of these laws slow evolution of amplitudes A (t, 

r) and phases ű(t, r) of modes can be received: 

 

E (t, r) = Ɇi Ai (t, r) sin (ɤ (ki) t + kir + ű i (t, r))  

 

For vacuum: 

  

 ɤ (k) =ʩ|k | 

  L>> ɚ 
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Chapter 3.The Universal Arrow of Time: 

Nonquantum gravitation theory  
 

 

0. Abstract: Solution of “informational paradox” for black holes 

and “paradox with the grandfather” for time travel 

“wormholes” 

 
The paper is dealing with the analysis of general relativity theory (theory of gravitation) from the 

point of view of thermodynamic time arrow. Within this framework ñinformational paradoxò for 

black holes and ñparadox with the grandfatherò for time travel ñwormholesò are resolved. 

 

1. Introduction. 

 
        In this paper we consider a thermodynamic time arrow [1-2] (defined by a direction of the 

entropy increase) within the limits of the non-quantum relativistic gravitation theory. In the 

classical Hamilton mechanics any initial and final states are possible. Besides, there is one-to-

one correspondence between them. The situation is different with relativistic theory of 

gravitation. There are topological singularities of space which make possible a situation when for 

finite time different initial states give an identical final state. It is a collapse of black holes. On 

the other hand, having considered inverse process in time - white holes, we receive a situation 

when a single initial state can give a set of different final states for a finite time. There are also 

situations of other sort when non-arbitrary initial states are possible. It is a case of "wormholes" 

through which it is possible to travel in the past. Thus, there is necessity of self-consistency 

between the past and the future making impossible some initial states. Black Holes lead to 

informational paradox, and "wormholes" lead to ñparadox with the grandfatherò. Analysis of 

these situations from a point of view of thermodynamical time arrow and resolution of the 

defined above paradoxes are a topic of this paper. 

       

2. Black Hole 

 
        In modern cosmological models there are some phenomena additional to those featured in 

classical mechanics. In Einsteinôs relativity theory, as well as in classical mechanics, motion is 

reversible. But there is also an important difference from classical mechanics. It is ambiguity of a 

solution of an initial value problem: deriving a final state of a system from the complete set of 

initial and boundary conditions can give multiple solutions or no solution. In general relativity 

theory, unlike classical mechanics, two various states for finite time can give infinitesimally 

close states. It happens at formation of a black hole as a result of a collapse. Hence, formation of 

the black hole goes with its entropy increase. 

        Letôs consider an inverse process featuring a white hole. In this process infinitesimally close 

initial states for finite time can give different terminating states. Time reversion leads to 

appearing of a white hole and results in entropy decrease. The white hole cannot exist in a reality 

because of the same reasons on which processes with entropy decrease are impossible in 

classical mechanics. 
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         However, its instability is much stronger than instability in classical mechanics. It has finite 

value in respect to infinitesimally small perturbations. As a consequence, there are alignment of 

thermodynamic time arrows between the white hole and the observer/environment. The white 

hole transforms to a black hole for the observer. It means that the observer/environment even 

infinitesimally weakly interacting with the white hole can affect considerably its evolution for 

finite time. Thus the gravitational interaction of the observer/environment with the white hole is 

always different from zero. 

     There is a well-known informational paradox here [3]: the collapse leads to losses of the 

information in the Black Hole. It, in turn, results in incompleteness of our knowledge of a state 

of system and, hence, to unpredictability of dynamics of system, including Black Hole. The 

information which in classical mechanics always conserves in a black hole disappears for ever. Is 

it really so? Or, probably, it is stored in some form inside of a black hole? Usually only two 

answers to this problem are considered: either the information really vanishes completely; or the 

information is stored inside and can be extracted by some way. But, most likely, the third answer 

is true. Because of inevitable influence of the observer/environment it is impossible to 

distinguish these two situations experimentally in principle! And if it is impossible to verify 

something experimentally, it cannot be a topic for the science. 

    Actually, suppose that the information is stored in a black hole. Is it possible to resolve 

informational paradox and to extract this information from it? Perhaps, we can reverse a 

collapsed black hole, to convert it into a white hole and to extract the disappeared information? It 

would seem impossible. But recently an interesting paper appeared which seems allowing to 

make it, although indirectly [4]. It is proved that a black hole is completely equivalent to an entry 

to a channel coupling two Universes, and an entry of this channel is similar to the black hole, 

while an exit is similar to the white hole. This white hole can be considered, in some sense, as a 

reversed black hole. But to verify that the information does not disappear we should come into 

the second Universe. To do it, we need to suppose that there is some ñwormholeò which 

connects these two Universes. Let assume that the observer can pass it and observe the white 

hole. But even if it happens, we know that the white hole is extremely unstable with respect to 

any observation. Attempts to observe it will result in its transformation into a black hole. It will 

close any possibility to verify that the information is stored. Hence, both solutions of 

informational paradox are really equivalent and observationally are not distinguishable. 

          This property of nonreversible information losses results in the fact that the entropy 

increase law turns to be an exact law of the nature within framework of the gravitational theory. 

Really, here appears such a new fundamental value as entropy of a black hole. It distinguishes 

gravitational theory from classical mechanics where the law entropy increase law has only 

approximate character (FAPP, for all practical purposes).   

      The accelerated expansion of the Universe results in the same effect of nonreversible 

information losses: there are unobservable fields, whence we are not reached even by light. 

Hence, these fields are unobservable, and the information stored in them is lost. Once again, it 

results in unpredictability of relativistic dynamics. 

  

3. Time wormhole 

 
      Let us consider from the point of view of the entropy such a paradoxical object of general 

relativity theory as time ñwormholeò [5]. At first we will consider the most popular variant 

offered by Morris and Thorne [6]. Suppose we have a space wormhole with the extremities lying 

nearby. By a very simple procedure (we will place one of the extremities on a spaceship and 

move it with a speed close to the speed of light, and then we will return this extremity on the 

former place) this space wormhole can be conversed into a time wormhole (wormhole traversing 

space into one traversing time). It can be used as a time machine. Such wormhole demands the 

special exotic matter necessary for conserving its equilibrium. However, there were models of a 

time machine which allow dispensing absolutely without the exotic substance [7, 9]. Or, using an 
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electromagnetic field, allow dispensing by its small amount [8]. Use of such a time machine can 

lead to the well-known ñparadox of the grandfatherò when the grandson, being returned in the 

past, kills his grandfather. How can this paradox be resolved?   

       From the physical point of view, the paradox of the grandfather means that not all initial 

states which exist before time machine formation are realizable. Introducing the additional 

feedback between the future and the past, a time wormhole makes them impossible. Hence, we 

either should explain non-reliability of such initial states, or suppose that time ñwormholeò is 

unstable, like a white hole, and easily changes. 

    Curiously enough, but the both explanations are true. However, for macroscopic wormholes 

the first explanation has priority. Really, it would be desirable very much to have a macroscopic 

topology of the space to be stable. Constrains on initial states appears from entropy increase law 

and the corresponding alignment of thermodynamic time arrows related to instability of states 

with opposite directions of these time arrows [1-2]. But macroscopic laws of thermodynamics 

are probabilistic. For a very small number of cases they are not correct (large-scale fluctuations). 

Both for these situations and for microscopic wormholes where the concept of a thermodynamic 

time arrows and thermodynamics laws are not applicable, the second explanation will have 

priority. It is related to extreme instability of the topology which is defined by the time machine 

[9]. We discussed above such type of extreme instability for white holes. For macroscopic 

wormholes the solution can be discovered by means of the entropy increase law. It is ensured by 

instability of processes with the entropy decrease with respect to the Universe. This instability 

results in alignment of thermodynamic time arrows. 

    Indeed, a space wormhole does not lead to a paradox. The objects immersed by its one 

extremity will go out of the other extremity during later time. Thus, the objects from a more 

normalized low-entropy past occur in a less normalized high-entropy future. During the motion 

through the wormhole, the entropy of the travelling objects also increases: they transfer from a 

more normalized state into a less normalized one. Thus, the time arrows of the object travelling 

inside of the wormhole, and the time arrow of the world around the wormhole would have the 

same directions.  It is also true for travelling through the time wormhole from the past to the 

future. 

    However, for travelling from the future to the past of the time arrow directions of the traveler 

into the wormhole and the world around the wormhole will already be opposite [10, 11-13]. 

Really, the object travels from the less normalized future to the more normalized past but its 

entropy increases, instead of decreasing! Hence, thermodynamic time arrows of the Universe and 

of the traveler will have opposite directions. Such process at which entropies of the traveler 

decreases concerning the Universe are unstable [1-2]. Hence, ñmemory about the pastò of the 

traveler will be destroyed (and, may be, he will be destroyed completely), what will not allow 

him ñto kill the grandfatherò. 

         Which mechanism at travelling in the wormhole ensures alignment of thermodynamic time 

arrows of the traveler and the Universe? Both extremities of a ñwormholeò are large bodies 

having some finite temperature. Both extremities under the second thermodynamics laws 

inevitably should radiate light which partially penetrates into the wormhole. Already at the 

moment of formation of a ñtime machineò (transformation of the space wormhole into the time 

one), a closed light ray appears between its extremities. Every time when the ray spins a circle it 

gets more and more biased to a violet part of the spectrum. Passing a circle after circle, rays are 

lost their focal point; therefore energy does not get amplified and does not become infinite. The 

violet bias means that the history of a particle of light is finite and defined by its coordinate time, 

despite the infinite number of circles [14]. This and other rays of light in the wormhole fluctuate. 

They also have a direction of its thermodynamic time arrow coinciding with a thermodynamic 

time arrow of the Universe. Thanks to the inevitable interaction with this radiation, a very 

unstable state of the traveler is destroyed. The state of the traveler is unstable because his 

thermodynamic time arrow is opposite to the Universe thermodynamic time arrows. The 

resulting destruction is enough to prevent the paradox of the grandfather. 
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        ñFree willò would allow us to initiate freely only irreversible processes with the entropy 

increase, but not with its decrease. Thus, we cannot send an object from the future to the past. 

Process of alignment of thermodynamic time arrows and the correspondent entropy increase law 

forbids the initial conditions necessary for travelling of the macroscopic object to the past and 

resulting in the ñparadox of the grandfatherò.  

  In paper [10] it is strictly mathematically proved that the thermodynamic time arrow cannot 

have identical orientation with the coordinate time arrow during all travel over a closed timelike 

curve. Process of alignment of thermodynamic time arrows (related to instability of processes 

with entropy decrease) is this very physical mechanism which actually ensures performance of 

the entropy increase law. 

    Macroscopic laws of thermodynamics are probabilistic. For a very small number of cases they 

do not work (large-scale fluctuations). Both for these situations and for microscopic systems 

where thermodynamics laws are not applicable, the other explanation of the grandfather paradox 

will have priority. In this case the time wormhole, like a white hole, appears unstable even with 

respect to infinitesimally weak perturbations from gravitation of travelling object. It can result in 

its fracture and prevention of the paradoxes, as is proved strictly in [9]. What are outcomes of 

reorganization of the space-time topology after fracture of the time wormhole? The author of [9] 

writes: 

    ñAs we argue é non-uniqueness does not let the time travel paradoxes into general relativity 

ð whatever happens in a causal region, a space-time always can evolve so that to avoid any 

paradoxes (at the sacrifice of the time machine at a pinch). The resulting space-times sometimes 

é curiously remind one of the many-world picturesò. 

    Letôs formulate the final conclusion: for macroscopic processes instability of processes with 

the entropy decrease and correspondent alignment of thermodynamic time arrows makes 

existence of initial conditions that allow travel to the past to be almost impossible. Thereby it 

prevents both wormholes fracture and traveling of macroscopic bodies in the past leading to the 

ñparadox of the grandfatherò. 

    For very improbable situations of macroscopic wormholes and for microscopic wormholes the 

wormhole fracture must occur. This fracture is a result of a remarkable property of general 

relativity theory ï extreme instability: infinitesimal external action (for example, gravitation 

from traveler) can produce wormhole fracture for finite time! 

    

4. Conclusions 

 
    Letôs summarize the said above. A process of observation should be inevitably taken into 

account when examining any physical process. We must transform from ideal dynamics over 

coordinate time arrow to observable dynamics with respect to thermodynamic time arrow of 

observer. It allows us to exclude all unobservable in the reality phenomena leading to paradoxes. 

Thus it is necessary to consider the following things. The observer inevitably is a non-

equilibrium macroscopic chaotic body with the thermodynamic time arrow defined by his 

entropy increase direction. He yields all measurements with respect to this thermodynamic time 

arrow. Dynamics of bodies with respect to this thermodynamic time arrow is referred to as 

observable dynamics. It differs from ideal dynamics, with respect to the coordinate time arrow. 

All bodies are featured in observable dynamics in macroparameters, unlike in the ideal dynamics 

where microparameters are used. The coordinate does not exist at thermodynamic equilibrium. It 

can change the direction and does not coincide with the coordinate time arrow of the ideal 

dynamics. There is always a small interaction between the observer and observable system. It 

leads to alignment of thermodynamic time arrows of the observer and the observable systems. 

  We can see a mysterious situation. The same reasons which have allowed us to resolve 

paradoxes of wave packet reduction in quantum mechanics, paradoxes of Loshmidt and Poincare 
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in classical mechanics allow to resolve the informational paradox of black holes and the paradox 

of the grandfather for time wormholes. Such remarkable universality! 
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ñparadox with the grandfatherò for time travel ñwormholesò, black stars, Penroseôs project of 

new quantum gravitation  theory, anthropic principle  are considered. 

 

1. Introduction 

 
       The paper includes the analysis of quantum gravitation theory from the point of view of the 

thermodynamic time arrow [1-3]. Within this framework ñinformational paradoxò for black 

holes and ñparadox of the grandfatherò for time ñwormholesò, black stars [4] and anthropic 

principle [5] are considered. It is shown that wishes of Penrose [6-7] for the future theory of 

quantum gravitation need not creation of a new theory but can be realized within framework of 

already existing theories by means of the thermodynamic approach. 

 

2. Black holes 

 
        In general relativity theory, unlike in classical mechanics, two different states for finite time 

can give infinitesimally close states. It happens during formation of a black hole as a result of its 

collapse. It results in the well-known informational paradox [8]: the collapse leads to losses of 

the information in the black hole. It results in incompleteness of our knowledge of the system 

state. Hence, it can leads to unpredictability of the system dynamics. The information which in 

classical and quantum mechanics is always conserved disappears in a black hole. Is it really so? 

Usually only two answers to this problem are considered: either the information really vanishes 

completely, or the information is conserved inside the black hole and can be extracted. We will 

see that in quantum gravitation we have the same answer, as in general relativity theory ï both 

answers are possible and true because the difference is not observed experimentally.  

      For the semi-classical theory of gravitation where gravitation is featured by relativistic 

relativity theory and fields are featured by quantum field theory, resolution of the paradox is 

made with the help of Hawking radiation.  

     In quantum field theory the physical vacuum is filled by permanently appearing and 

disappearing ñvirtual particlesò. Close to the event horizon (but nevertheless outside it) of a 

black hole, pairs of particle-antiparticle can be born directly from vacuum. A situation is possible 

when an antiparticle total energy appears to be subzero, and a particle total energy appears to be 

positive. Falling to the black hole, the antiparticle reduces its total energy and mass while the 

particle is capable to fly away to infinity. For a remote observer it looks like Hawking radiation 

of the black hole. 

     Since this radiation is incoherent, all information accumulated inside of it disappears after 

evaporation of the black hole. It is an answer of the semi-classical theory. It would seem that this 

result contradicts to reversibility and unitarily of quantum mechanics where the information can 

not be lost. We would expect the same result from quantum gravitation theory. But is it really 

so? 

     We donôt have now a finished theory of quantum gravitation. However, for a special case of 

the 5-dimentional anti-de-Sitter space this paradox is considered by many scientists to be 

resolved. The information is supposed to be conserved, because a hypothesis about AdS/CFT 

dualities, i.e. hypotheses that quantum gravitation in the 5-dimensional anti-de-Sitter space (that 

is with the negative cosmological term) is equivalent mathematically to a conformal field theory 

on a 4-surface of this world [9]. It was checked in some special cases but not proved yet in a 

general case. 

   Suppose that if this hypothesis is really true, it automatically solves the problem of 

information. The matter is that the conformal field theory is structurally unitary. If it is really 

dual to quantum gravitation then the corresponding quantum gravitation theory is unitary too. So, 

the information in this case is not lost. 
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    Letôs note that it not so. Taking into account the influence of the observer makes information 

losses inevitable. The process of black hole formation and its subsequent evaporation happens on 

the whole surface of the anti-de-Sitter world (described by the conformal quantum theory) which 

includes the observer as well. The observer inevitably gravitationally interacts with the black 

hole and its radiation. Unlike to the conventional quantum mechanics, all-pervading gravitational 

interaction exists in quantum gravitation. So, influence of the observer already cannot be made 

negligibly small under any requirements. Interaction with the observer makes the system not 

unitary, similarly to the semi-classical case. 

    It would seem that we can solve the problem by including the observer in the description of 

the system. But the observer cannot precisely know the initial state and analyze the system when 

he is its part! So, he cannot experimentally verify the difference between unitary and not unitary 

evolution. It is necessary to have complete knowledge of the system state for such verification. 

But it is impossible at introspection. 

    In the anti-de-Sitter world Universe expansion is inevitably replaced by a collapse. But the 

same effect information losses are available also for the accelerated expansion of the Universe - 

there appear unobservable parts of Universe, whence we are not reached even by light. Hence, 

these parts are unobservable, and the information containing in them is lost. It again results in 

unpredictability. 

    Thus, the experimental verification of the informational paradox becomes impossible in 

principle again! In case of quantum gravitation information, conservation happens only on paper 

in the ideal dynamics. In the real observable dynamics the difference is not observed 

experimentally in principle. It is possible to consider both answers to the problem to be correct. 

The two cases of conservation or non-conservation of information are not distinguishable 

experimentally.  

   Principal difference between the conventional quantum theory and quantum gravitation theory 

occurs because of inevitable gravitational interaction. In usual quantum theory interaction 

between an observer and an observed system can be made zero in principle at known initial 

conditions of the observed system. In quantum gravitational systems the small gravitational 

interaction with the observer is irremovable in principle: it creates principally inherent 

decoherence and converts evolution of any observable system into non-unitary. Only the non-

observable ideal evolution on paper can be made formally unitary. But it is also possible not to 

make it unitary ï here we have freedom to choose. If we wish to feature real observable 

dynamics we can put the dynamics to be non-unitary. For macrobodies such observable 

dynamics is quasi-classical theory. It is experimentally indistinguishable for the real macroscopic 

observer from unitary quantum gravitation dynamics of large black holes. 

 

3. Time wormhole 

 
      Let us consider from the point of view of the entropy such a paradoxical object of general 

relativity theory as time ñwormholeò [5]. At first we will consider the most popular variant 

offered by Morris and Thorne [6]. Suppose we have a space wormhole with the extremities lying 

nearby. By a very simple procedure (we will place one of the extremities on a spaceship and 

move it with a speed close to the speed of light, and then we will return this extremity on the 

former place) this space wormhole can be conversed into a time wormhole (wormhole traversing 

space into one traversing time). It can be used as a time machine. Such wormhole demands the 

special exotic matter necessary for conserving its equilibrium. However, there were models of a 

time machine which allow dispensing absolutely without the exotic substance [7, 9]. Or, using an 

electromagnetic field, allow dispensing by its small amount [8]. Use of such a time machine can 

lead to the well-known ñparadox of the grandfatherò when the grandson, being returned in the 

past, kills his grandfather. How can this paradox be resolved?   

    Letôs consider that the answer to this problem is given by the semi-classical theory of 

gravitation. Suppose that the macroscopic topology of the space related to the time machine is 
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unchanged. At the moment of the time machine formation (transformation of the space 

wormhole into time one) between its extremities there is a closed light ray. Its energy does not 

reach infinity, despite the infinite number of passes, because of a defocusing of the light [16]. 

Another situation, however, arises in the semi-classical theory with a radiation field of ñvacuum 

fluctuationsò [14]. Passing the infinite number of times through the wormhole and being 

summed with each other, these fluctuations reach the infinite energy which will destroy any 

traveller. 

   However, the situation in quantum gravitation is different. Quantum fluctuations contain large 

energies when they arise on short distances. So it is possible to find so small distance on which 

energy of fluctuation will be large enough for formation of a tiny black hole, and the horizon of 

this tiny black hole will have the same size as this small distance. The space - time is not capable 

to remain homogeneous on such short distances. This mechanism ensures natural ñblockingò of 

singular fluctuations formation, restricting them in their sizes: ñmaximum energy in minimal 

sizesò [16]. 

      Detailed calculations of quantum gravitation show [15] that this ñblockingò to formation of 

singular fluctuations provides a very small but not a zero probability of unobstructed transiting 

through a time ñwormholeò for macroscopic object. How can the ñparadox of the grandfatherò be 

prevented in this situation? Here it is convenient for us to use the language of the multi-world 

interpretation of quantum mechanics. To prevent this paradox, the traveller should penetrate into 

the parallel world where it can easily ñkill the grandfatherò without breaking a causality 

principle. Such a parallel world will interfere quantum-mechanically with the worlds of the ñnot 

killed grandfatherò where the observer was unsuccessful to transit the time wormhole. However, 

the probability amplitude of such the world will be extremely small. Can the observer in the 

world where ñthe grandfather is not killedò discover the alternative world at least in principle, 

using quantum correlations between the worlds? Similarly to ñparadox of the Schrodinger cat, he 

cannot do it because of the same reasons as in the conventional quantum mechanics [2]. 

Observation of large effects of quantum correlations is impossible because of ñobserverôs 

memory erasingò [1-2]. Penetration to the parallel world of quantum mechanics is 

experimentally indistinguishable from the time wormhole fracture and penetration to the parallel 

world of general relativity theory [3, 17]. It means that from the point of view of the external real 

macroscopic observer a situation when the traveler has perished in the wormhole or has 

penetrated in ñanother worldò is observationally indistinguishable. It is equivalent to a situation 

when the traveller falls into a black hole. We do not know whether he is crushed in the 

singularity or penetrated into ñthe other worldò through the white hole [18]. (Although this 

difference is observed and essential for the traveller. But he will carry away all these 

observations with himself into ñthe other worldò.) We see that as well as in a case of 

ñinformational paradoxò, the difference between quantum and semi-classical theories for 

macroscopic objects experimentally is not observed for the macroscopic observer which is not 

travelling in the time wormhole. 

     

4. Black stars 

 
       Recently an interesting theory of ñblack starsò appeared [4]. Usually a collapse of a black 

hole is considered as a fast process. However, we donôt know well states of the matter under high 

pressures. We know that intermediate stages such as white dwarfs or neutron stars are possible 

before a black hole collapse. These intermediate stages make a collapse not avalanche-like but 

gradual. Probably, additional intermediate stages will appear on the way to a collapse, for 

example, quark stars. These intermediate stages make this process to be gradual without a fast 

collapse at all. For classical gravitation it is incidental. The star becomes a black hole for gradual 

process too. But for semi-classical gravitation it is important. It can be shown that for such case 

at slow squeezing quantum fluctuations at a surface will prevent a star material to collapse to a 

singularity and to become a black hole. Outside, this object would be similar to a black hole but 
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inside it would be different, conserving all information without singularity. It will allow for a 

traveller to penetrate through its surface and to come back. It is worth to note that there is a 

considerable objection against such picture. 

        How stable is such construction of a star with respect to the external perturbation imported 

by the traveller? Also how stable is the traveller during such travel?  The traveller is a 

macroscopic body. After penetration to a black star, he will increase its mass stepwise at finite 

value. It can results in its collapse to a black hole. Suppose that the process again goes 

ñgraduallyò without collapse. Then the traveller ñwould be dissolvedò into the star and cannot 

come back as well. Thus, it seems that the difference between a black star and a black hole can 

not be observed experimentally. So, it means that the difference between these objects exists 

only on paper, i.e. in ideal dynamics. 

                                  

5. Penrose’s project of new quantum gravity theory 

 
      In his remarkable books [6-7] Penrose gives a remarkable prediction of the future theory of 

quantum gravitation. In this theory: 

 

1) Unlike to usual quantum mechanics, wave packet reduction is a fundamental property of the 

theory. 

2) This reduction is inseparably linked with the phenomenon of gravitation. 

3) The reduction leads not only to probabilistic laws but can lead to some more complex 

uncertain behavior that can not be predicted even by a probability law. 

4) Unlike to remarkable coherent quantum systems, classical chaotic non-equilibrium systems 

are exposed to criticism. They are supposed to be not relevant for modelling of real complex 

systems. The unpredictable systems described above must be only pure quantum system. 

 

It is worth to note that we need not a new theory for receiving all these properties. Letôs take into 

account an inevitable gravitational interaction of the macroscopic real observer and his 

thermodynamic time arrow. It results in all described above outcomes within framework of 

already existing theories of quantum gravitation. Besides, classical chaotic non-equilibrium 

systems possess all properties of quantum ones. For any ñpurely quantum effectò it is always 

possible to discover such classical analogue (Appendix A [2]). Namely: 

 

1) We saw above that an inevitable gravitational interaction of a macroscopic real observer with 

an unstable observable system inevitably makes evolution of the observable system non-unitary. 

The difference between the unitary and non-unitary theory exists only on paper and is not 

observed experimentally in quantum gravitation theory. 

2) Because of the reasons stated above the gravitation interaction results in the inevitable 

reduction and correspondent non-unitarity in framework of the current quantum gravitation 

theory. Moreover, for macroscopic objects the semiclassical theory is already possessing 

desirable fundamental property of non-unitary. It is experimentally equivalent to the quantum 

gravitation theory.  

3) Behavior of many macroscopic bodies, in spite of non-unitarity, can be described completely 

by a set of macroparameters and laws of their evolution. There are, however, unpredictable 

systems whose behavior cannot be described completely even by probability laws.      

   For example, let us consider quantum computers. Suppose that some person started such a 

quantum computer and knows its initial state. Its behavior is completely predicted by such 

person. However, for the second person who is not present at start, its behavior is uncertain and 

unpredictable. Moreover, an attempt of the second person to observe some intermediate state of 

the quantum computer would result in destroying its normal operation. 

  In case of quantum gravitation even the person who started quantum computer cannot predict 

its behavior. Indeed, the inevitable gravitational interaction between the person and the quantum 
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computer will make such prediction impossible. Thus, ñthe unpredictability which is distinct 

from a probability lawò becomes a fundamental property of any quantum gravitation theory.  

 4) Unstable classical systems in many aspects remind on the properties of the quantum system 

(Appendix A [2]). Moreover, mathematical models of classical analogues of quantum computers 

exist [19]. Some paradoxical properties of the life objects reminding quantum computers can be 

modelled by classical unstable systems [20].     

   Summing up, we can see that all wishes of Penrose are realizable within the framework of the 

existing paradigm and there is no need in any new fundamental theory. Moreover, all properties 

of macroobjects are usually described by macroparameters to exclude influence of the 

macroscopic observer. That inevitably results in unobservability of too small intervals of time 

and space. So it is possible to construct their observable dynamics on basis of ñdiscrete model of 

space-timeò. But such dynamics would not be a new theory. For any macroscopic observer the 

dynamics would be experimentally indistinguishable from the current quantum theory of 

gravitation. 

 

6. Anthropic principle in quantum gravity theory 

 
     The number of possible vacuum states in quantum gravitation theory is equal to a very large 

value. For a selection of suitable vacuums anthropic principle is usually used [5]. It means that 

evolution of the system should result in appearing an observer which is capable to observe the 

Universe. But such formulation is of too philosophical nature. It is difficult to use it in practice. 

We can formulate here more accurate physical principles which are equivalent to the anthropic 

principle: 

     The initial state of the Universe should result in formation of its substance in the form of a set 

of many macroscopic non-equilibrium objects weakly interacting with each other. These objects 

should have entropy and temperature. They should have thermodynamic time arrows. Small 

local interaction between objects should result in alignment of thermodynamic time arrows. 

Though these objects consist of many particles and are described by a huge set of 

microparameters, evolution of these objects can be described by a set of macroparameters, 

except for rare instable state. 

     However, these unstable states play an important role, forming a basis for origin of an 

observer in the Universe. There should be unstable global correlations between parts of the 

Universe and non-equilibrium macrosystems with local interior correlations which are the origin 

of the observer.    

    We can conclude here: to get the situation described above, the initial state of the Universe 

should be highly ordered and possees the low entropy.  

     I.e., in short, evolution should result in the world that can be described in the thermodynamic 

form [1-3, 21-23]. Only such the world can be the origin of an observer who is capable to study 

this world. 

 

7. Conclusions 

 
       We see that the informational paradox and the paradox of the grandfather are resolved in the 

quantum gravitational theory very similarly to those in the non-quantum general relativity 

theory. It is realized by consideration of weak interaction of systems with the real non-

equilibrium macroscopic observer. Moreover, this approach (similarly to usual quantum theory) 

allows resolving the wave packet reduction problem. But this reduction in quantum gravitation 

becomes a fundamental property of the theory, unlike in the case of conventional quantum 

mechanics. Such approach allows considering other complicated questions of quantum 

gravitation ï anthropic principle, black stars. 
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0. Abstract: Solution of the paradox about contradiction between 

reductionism and principal (not defined by complexity) 

emergence on basis Gödel-like theorem; Solution of the 

paradox about the existence of the systems with entropy 

decrease. 

 
We see that exact equations of quantum and classical mechanics describe ideal dynamics which is 

reversible and leads to Poincareôs returns. Real equations of physics describing observable dynamics, for 

example, master equations of statistical mechanics, hydrodynamic equations of viscous fluid, Boltzmann 

equation in thermodynamics, and the entropy increase law in the isolated systems are irreversible and 

exclude Poincareôs returns to the initial state. Besides, these equations describe systems in terms of 

macroparameters or phase distribution functions of microparameters. There are two reasons of such 

differences between ideal and observable dynamics. Firstly, there is uncontrollable noise from the 

external observer. Secondly, when the observer is included into described system (introspection) the 

complete self-description of a state of such full system is impossible. Besides, introspection is possible 

during finite time when the thermodynamic time arrow of the observer exists and does not change the 

direction. Not in all cases ideal dynamics broken by external noise (or being incomplete at introspection) 

can be changed to predictable observable dynamics. For many systems introduction of macroparameters 

that allow exhaustive describing of dynamics of the system is impossible. Their dynamics becomes 

unpredictable in principle, sometimes even unpredictable by the probabilistic way. We will refer to 

dynamics describing such system as unpredictable dynamics. As follows from the definition of such 

systems, it is impossible to introduce a complete set of macroparameters for unpredictable dynamics. 

(Such set of macroparameters for observable dynamics allowed predicting their behavior by a complete 

way.) Dynamics of unpredictable systems is not described and not predicted by scientific methods. Thus, 

the science itself puts boundaries for its applicability. But such systems can intuitively ñunderstand 

itselfò and ñpredictò the behavior ñof its ownò or even ñcommunicate with each otherò at intuitive level. 

 

1. Introduction 

 
     Letôs give definitions of observed and ideal dynamics [1-4], and also explain necessity of 

introduction of observable dynamics. We will refer to exact laws of quantum or classical 

mechanics as to ideal dynamics. Why have we named them ideal? Because for the most of real 

systems the entropy increase law or wave packet reduction in the quantum case are observed. 

These properties contradict with laws of ideal dynamics. Ideal dynamics is reversible and 

includes Poincareôs returns. It is not observed in irreversible observable dynamics. Where does 

this inconsistency between these kinds of dynamics come from? 

     The real observer is always a macroscopic system far from thermodynamic equilibrium. It 

possesses a thermodynamic time arrow of its own which exists for a finite time (until the 

equilibrium is reached) and can change its direction. Besides, there is a small interaction of the 

observer with the observable system which results in alignment of thermodynamic time arrows 

and, in case of quantum mechanics, in wave packet reduction. 

      The observer describes the observable system in terms of macroparameters and 

corresponding thermodynamic time arrow. It also results in the difference of observable 

dynamics and ideal dynamics. The ideal dynamics is formulated with respect to the abstract 

coordinate time in terms of microparameters. 

      Violations of ideal dynamics are related to either openness of measured systems (i.e. it can be 

explained by influence of environment/observer) or impossibility of self-measuring at 

introspection (for the full closed physical systems including both the environment and the 

observer). What is it possible to do for such cases? The real system is either open or incomplete, 

i.e. we cannot use physics for prediction of the system evolution? Not at all! 
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     Lots of such systems can be described by equations of exact or probabilistic dynamics, 

despite openness or incompleteness of description. We name it observable dynamics. The most 

of equations in physics ï master equations of statistical mechanics, hydrodynamic equation of 

viscous fluid, Boltzmann equation in thermodynamics, and the entropy increase law ï are 

equations of observable dynamics. 

     To possess the property specified above observable dynamics should meet certain 

requirements. It cannot operate with the full set of microvariables. In observable dynamics we 

use much smaller number of macrovariables which are some functions of microvariables. It 

makes the dynamics much more stable with respect to errors of initial conditions and external 

noise. Really, a microstate change does not result inevitably in a macrostate change, as one 

macrostate is correspondent to a huge set of microstates. For example, in case of gas such 

macrovariables are density, pressure, temperature and entropy. Microvariables are velocities and 

coordinates of all its molecules. 

    How can we get observable dynamics from ideal dynamics? It can be got either by insertion to 

equations of the ideal equations of small external noise, or insertion of errors to an initial state. 

Errors/noise should be large enough to break effects unobservable in reality. It is reversibility of 

motion or Poincareôs returns. On the other hand, they should be small enough not to influence 

observable processes with entropy increase. 

    For the complete physical system including the observer, observable system and a surrounding 

medium, Observable Dynamics is not falsifiable in Popperôs sense [36] (under condition of 

fidelity of Ideal Dynamics). I.e. the difference between Ideal and Observable Dynamics in this 

case cannot be observed in experiment. 

    However, there are cases when it is not possible to find any observable dynamics. The system 

are unpredictable, because of either openness or description incompleteness. It is a case of 

unpredictable dynamics [21, 29-33] considered here.  

 

2. Unpredictable dynamics 
 

      Letôs introduce the concept of synergetic models [10]. We will name so simple physical or 

mathematical systems. Such systems illustrate in a simple form some real or supposed properties 

of unpredictable and complex (living) systems.  

      Unpredictable systems, as a result of its unpredictability, are extremely unstable with respect 

to external observation or thermal noise. To prevent their chaotization, they should have some 

protection from external influence. 

       Therefore, we are mainly interested in synergetic models of systems that are capable to 

protect itself from external noise (from decoherence in quantum mechanics). They conserve 

internal correlations (quantum or classical), resulting in reversibility or Poincareôs returns. They 

also can conserve correlations with the surrounding world. 

There are three methods for such protection: 

 

    1) The passive method - creation of some "walls" or shells impenetrable for noise. It is also 

possible to keep such systems at very low temperatures. Many models of quantum computers 

may serve as an example. 

     2) The active method, inverse to passive - complex dissipative or living systems, they 

conserve disequilibrium by the help of active interaction and interchanging of energy and 

substance with environment (metabolism). It is thought that the future models of quantum 

computers should correspond to this field. 

      3) When correlations cover the whole Universe. The external source of noise is absent here. 

Origin of correlations over Universe is that Universe was in low entropy initial states. Universe 

appeared from Big Bang. We will name these correlations as global correlations. Sometimes it is 

figuratively named ñholographic model of Universeò. 

 



 53 

The following facts ought to be noted: 

1) Many complex systems during evolution pass dynamic bifurcation points when there are 

several alternative ways of future evolution. The selection of one of them depends on the 

slightest fluctuations of the system state in the bifurcation point [5-6]. In these points 

even weak correlations can have huge influence on future. These correlations define one 

from alternative ways of future evolution specified above.  Presence of such correlations 

restricts predictive force of the Science, but it does not restrict at all our personal 

intuition. Since we are an integral part of our Universe we are capable at some subjective 

level to ñfeelò these correlations inaccessible for scientific observation. No contradiction 

with current physics exists here. 

2) In the described unobservable systems the entropy decrease is often observed or they are 

supported at a very low-entropy state. It does not contradict to the second 

thermodynamics law of the entropy decrease. Really, for creation of both passive and the 

active protection huge negoentropy from environment is necessary. Therefore the total 

entropy of system and an environment only increase. The entropy increase law remains 

correct for a full system (observable system + an environment + the observer) though it is 

untrue for the observable system. Entropy decrease in the full system can happen, for 

example Poincareôs returns. But they are unobservable [1-4]. Therefore, we can skip 

them. 

3) Existence of many unpredictable systems is accompanied by the entropy decrease (It 

does not contradict to the entropy increase according to the second law of 

thermodynamics as it is explained above in the third item). Thus, existence of such 

systems corresponds to the generalized principle of Le-Shatelie - Brown: the system 

hinders with any modification of the state caused both by external action, and internal 

processes, or, otherwise, any modification of a state of the system caused both by 

external and internal reasons, generates in the system the processes guided on reducing 

this modification. In this case the entropy growth generates appearance of systems cause 

the entropy decrease. 

4) Often maximum entropy production principle (MaxEPP) demonstrates correct results 

[38]. According to this principle, the non-equilibrium system to aspire to a state at which 

entropy growth in system would be maximal. Despite the apparent inconsistency, 

MaxEPP does not contradict to Prigogine's minimum entropy production principle 

(MinEPP) for linear non-equilibrium systems [38]. These are absolutely different 

variation principles. Though for both cases the extreme of the same function (the entropy 

production) is looked for, but various restrictions and various parameters of a variation 

are thus used. It is not necessary to oppose these principles, as they are applicable to 

various stages of evolution of non-equilibrium system. MaxEPP means that dissipative 

unpredictable systems (including living systems), being in the closed system with finite 

volume, accelerate appearance of thermodynamic equilibrium for this system. It means 

that they also reduce Poincareôs return time, i.e. promote faster return to the low-entropy 

state. It again corresponds to the generalized principle of Le-Shatelie - Brown: the 

entropy growth generates appearance of systems cause the entropy decrease. From all the 

above-stated it is possible to give a very interesting conclusion: global "purpose" of 

dissipative systems (including living systems) is (a) minimization of their own entropy (b) 

stimulation of the global full system to faster Poincareôs return to the initial low-entropy 

state.  

5) Global correlations generally ñspreadò over a closed system with the finite volume and 

result only in Poincareôs unobservable return [1-4]. However, in the presence of objects 

conserving local correlations, global correlations can become apparent in correlation 

between such objects with each other and around the world. Thus, presence of conserved 

local correlations allows making global correlations to be observable, preventing their 

full ñspreadingò over the system. 
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6) The correct definition of thermodynamic macroscopic entropy is a very difficult problem 

for complex physical systems without local equilibrium [39]. 

7) Very important facts ought to be noted. Unstable correlations exist not only in quantum 

but also in classical mechanics. Hence, such models should not have only quantum 

character. They can be also classical! Very often it is wrongly stated that only the 

quantum mechanics have such properties [11-12]. However, it is not so [7-9]. 

Introduction of small, but finite interaction by ñhandsò during classical measurement and 

small errors of an initial state erases the difference between properties of quantum and 

classical mechanics (in the presence of unstable correlations of microstates).  

 

3. Synergetic models of local correlations 
 

 

Letôs consider examples of synergetic models of unpredictable systems using the passive or 

active methods for protection from noise.  

 

   1) There are exceptional cases for which there is no alignment of thermodynamic time arrows 

[12-13]. 

    2) Phase transition or bifurcation points. In such points (some instance for evolution or some 

value for external parameter) a macroscopic system described by observable dynamics can be 

transformed not to single but to several macroscopic states. That is, observable dynamics loses 

the unambiguity in these points. There are huge macroscopic fluctuations in these points, and 

used macroparameters does not result in predictability of the system. Evolution becomes 

unpredictable, i.e. there is unpredictable dynamics. 

           3) Letôs take a quantum microscopic or mesoscopic system described by ideal dynamics and 

isolated from decohernece. Its dynamics depends on uncontrollable microscopic quantum 

correlations. These correlations are very unstable and can disappear as a result of decoherence 

(entangling with environment/observer).  For example, let us consider a quantum system. 

Suppose that some person knows its initial and final states only. Its behavior is completely 

predicted by such person.  In the time interval between the start and finish the system is isolated 

from the environment/observer. In that case these microscopic correlations do not disappear and 

influence dynamics. However, for the second person who is not present at start, its behavior is 

uncertain and unpredictable. Moreover, an attempt of the second person to observe some 

intermediate state of the quantum computer would result in destroying its normal operation. I.e. 

from the point of view of such observer, this is unpredictable dynamics. Well-known examples 

of such systems are quantum computers and quantum cryptographic transmitting systems [14-

15].  
      Quantum computers are unpredictable for any observer who does not know its state in the 

beginning of calculations. Any attempt of such observer to measure the intermediate state of a 

quantum computer during calculation destroys calculation process in unpredictable way. Its other 

important property is high parallelism of calculation. It is a consequence of QM laws of linearity. 

Initial state can be chosen as the sum of many possible initial states of ñquantum bits of the 

informationò. Because of QM laws of linearity all components of this sum can evolve in 

independent way. This parallelism allows solving very quickly many important problems which 

usual computers cannot solve in real time. It gives rise to large hopefulness about future practical 

use of quantum computers. 

    Quantum cryptographic transmitting systems use property of the unpredictability and 

unobservability of ñmessagesò that cannot be read during transmitting by any external observer. 

Really, these ñmessagesò are usual quantum systems featured by quantum laws and quantum 

correlations. An external observer which has no information about its initial states and tries make 

measuring (reading) of a ñmessageò in course of transmission inevitably destroy this 

transmission. Thus, message interception appears principally impossible under laws of physics.      
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4) It should be emphasized that, contrary to the widespread opinion, both quantum computers 

and quantum cryptography [14-15] have classical analogues. Really, in classical systems, unlike 

in quantum systems, measuring can be made precisely in principle without any distortion of the 

measured state. However, in classical chaotic systems too there are uncontrollable and unstable 

microscopic additional correlations resulting in reversibility and Poincareôs returns. Introducing 

some small finite perturbation or initial state errors ñby handsò destroys these correlations and 

erases this principal difference between classical and quantum system behavior. Such small 

external noise from environment always exists in any real system. By isolation of chaotic 

classical systems from this external noise we obtain classical analogues of isolated quantum 

devices with quantum correlations. 

There exist synergetic models of the classical computers which ensure, like quantum 

computers, huge parallelism of calculations [7].  
Analogues of quantum computers are molecular computers [9]. The huge number of 

molecules ensures parallelism of evaluations. The unstable microscopic additional correlations 

(resulting in reversibility and returns) ensure dynamics of intermediate states to be unpredictable 

for the external observer which is not informed about the computer initial state. He would 

destroy computer calculation during attempt to measure some intermediate state.    .  

    Similar arguments can be used for classical cryptographic transmitting systems using these 

classical unstable microscopic additional correlations for information transition. ñMessageò is 

some classical system that is chaotic in intermediate states. So any attempt to intercept it 

inevitably destroys it similarly to QM case. 

  5) Conservation of unstable microscopic correlations can be ensured not only by passive 

isolation from an environment and the observer but also by active dynamic mechanism of 

perturbations cancelling. It happens in so-called physical stationary systems in which steady 

state is supported by continuous stream of energy or substance through system. An example is 

a micromaser [16] - a small and well conducting cavity with electromagnetic radiation inside. 

The size of a cavity is so small that radiation is necessary to consider with the help of QM. 

Radiation damps because of interaction with conducting cavity walls. This system is well 

featured by density matrix in base energy eigenfunction. Such a set is the best choose for 

observable dynamics. Microscopic correlations correspond to non-diagonal elements of the 

density matrix. Non-diagonal elements converge to zero much faster than diagonal ones during 

radiation damping. In other words, decoherence time is much less than relaxation time. However, 

a beam of excited particles, passing through a micromaser, leads to the strong damping 

deceleration of density matrix non-diagonal elements (microcorrelations). It also leads to non-

zero radiation in steady state. 

   Also, in the theory of quantum computers methods of the active protection are developed. 

These methods protect quantum correlations from decoherence. They are capable to conserve 

correlations as long as desired, by iterating cycles of active quantum error correction. Repetition 

code in quantum information is not possible due to the no-cloning theorem. Peter Shor was first 

to discover the method of formulating a quantum error correcting code by storing the 

information of one qubit onto a highly-entangled state of nine qubits [17]. 

    6) In physics a macrostate is usually considered as some passive function of a microstate. 

However, it is possible to consider a case when the system observes (measures) both its 

macrostate and an environment macrostate. The result of the observation (measurement) is 

recorded into the microscopic ñmemoryò. By such a way the feedback appears between 

macrostates and microstates.  

    An example of very complex stationary systems is living systems. Their states are very far 

from thermodynamic equilibrium and extremely complex. These systems are highly ordered but 

their order is strongly different from order of a lifeless periodical crystal. Low entropy 

disequilibrium of live beings is supported by entropy growth in environment
1
. It is metabolism - 

                                                 
1
 Entropy of the Sun grows in such a way, for example. It is an energy source for life on the Earth. 
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the continuous stream of substance and energy through a live organism. On the other hand, not 

only metabolism supports disequilibrium, this disequilibrium is itself a catalytic agent of 

metabolic process, i.e. creates and supports it at a necessary level. As the state of live systems is 

strongly non-equilibrium, it can support existing unstable microcorrelations, preventing to 

decoherence. These correlations can be both between parts of a live system and between 

different live systems (or live systems with lifeless systems). If it happens dynamics of the live 

system can be referred to as unpredictable dynamics. Huge successes of the molecular biology 

allow describing very well dynamics of live systems. But there is no proof that we are capable to 

feature completely all very complex processes in the live system. 

    It is difficult enough to analyze real living systems within framework of concepts of ideal, 

observed and unpredictable dynamics because of their huge complexity. But it is possible to 

construct simple mathematical models. It is, for example, non-equilibrium stationary systems 

with metabolism. It would allow us to understand a possible role of all of three types of 

dynamics for such systems. These models can be both quantum [11-12, 18-20, 35] and classical 

[7-9].   

7) The cases described above do not characterize all multiplicity of unpredictable types of 

dynamics. Exact conditions at which ideal dynamics transfers in observable and unpredictable 

dynamics present a problem which is not solved completely for mathematics and physics yet. 

The role of these three types of dynamics for complex stationary systems is an unsolved problem 

too (being related to the previous problem). The solution of these problems will allow 

understanding physical principles of life more deeply. 

 

4. Synergetic models of global correlations expanded over the 

whole Universe 
 

   With the help of synergetic ñtoyò models it is possible to understand synchronicity
2
 

(simultaneity) of processes causally not connected [37], and also to illustrate a phenomenon of 

global correlations. 

   Global correlations of the Universe and the definition of life as the totality of systems 

maintaining correlation in contrast to the external noise is a reasonable explanation of the 

mysterious silence of Cosmos, i.e. the absence of signals from other intelligent worlds. All parts 

of the universe having the unique center of origin (Big Bang) are correlated, and life maintains 

these correlations which are at the base of its existence. Therefore, the emergence of life in 

different parts of the Universe is correlated, so that all the civilizations have roughly the same 

level of development, and there arenôt just any supercivilizations capable of somehow reaching 

the Earth. 

 

 Blow up systems 
                                                 
2
 The study was conducted by Russian specialists under guidance of Valeri Isakov, a mathematician who specializes 

in paranormal phenomena. They were not able to obtain data from domestic flights, so the researchers used Western 

statistics. As it turned out over the past 20 years, flights which ended in disaster were refused by passengers by 18% 

more in number than in case of normally ended flights. "We are just mathematics who revealed a clear statistical 

anomaly. But mystically-minded people may well associate it with the existence of some higher power"- quoted 

Isakov, "Komsomolskaya Pravda". 

http://mysouth.su/2011/06/scientists-have-proved-the-existence-of-guardian-angels/; 

http://kp.ru/daily/25707/908213/ 

ñThat was Stauntonôs theory, and the computer bore him out. In cases where planes or trains crash, the vehicles are 

running at 61 percent capacity, as regards passenger loads. In cases where they donôt, the vehicles are running at 76 

per cent capacity. Thatôs a difference of 15 percent over a large computer run, and that sort of across-the-board 

deviation is significant. Staunton points out that, statistically speaking, a 3 percent deviation would be food for 

thought, and heôs right. Itôs an anomaly the size of Texas. Stauntonôs deduction was that people know which planes 

and trains are going to crashé that they are unconsciously predicting the future." 

Stephen King, "The Stand" (1990) 

http://mysouth.su/2011/06/scientists-have-proved-the-existence-of-guardian-angels/
http://kp.ru/daily/25707/908213/


 57 

 
Examples are non-stationary systems with "blow up" [6, 22-25] considered by Kurdumovôs 

school. In these processes a function on plane is defined. Its dynamics is described by the non-

linear equation, similar to the equation of burning:  

µr / µ t = f (r) + µ / µ r (H (r) µr / µ r),                                                                                 (I) 

 where r - density, N = ñ r dr, r - space coordinate, t - time coordinate,  f(r), H (r) - non-linear 

connections: 

f (r)  r b, H (r)  r s, 
   These equations have a set of dynamic solutions named solutions with "blow up". It was 

proved localization of processes in the form of structures (at b>s +1) with discrete spectrum. 

The structures can be simple (with individual maximums of different intensity). They also can be 

complex (united simple structures) with different space forms and several maximums of different 

intensity. It is shown that the non-linear dissipative medium potentially contains a spectrum of 

such various structures-attractors. Let (r, ű) be polar coordinates. 
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    For these solutions a value of function can converge to infinity for finite time Ű. It is 

interesting that the function reaches infinity in all maximums in the same instant, i.e. is 

synchronous. In process of converging to time Ű the solution "shrinks", the maximums "blow up" 

and moves to a common centre. Approximately at the moment of 0.9Ű the system becomes 

unstable, and fluctuations of the initial condition can destroy the solution. For high correlated 

initial condition it is possible to reduce these fluctuations to as small values as desired. 

 

 
Fig. 1. From [35]. It is one of structures-attractors of the equation of burning (I) in the form of 

the solution with ñblow upò. 

 

   By means of such models we can illustrate the population growth (or level of engineering 

development of civilizations) in megacities of our planet [25]. Points of maximum of function 

r are megacities, and population density is a value of the function r.  
    It is possible to spread this model to the whole Universe. Then the points of maximum are 

civilizations, and population density of civilizations (or level of engineering development of 

civilizations) is a value of the function r. For this purpose we will make the model more 



 58 

complicated. Suppose that at the moment when process starts to go out on a growing asymptotic 

solution there is very fast expansion ("inflation") of the plane in which process with "blow up" 

runs. Nevertheless, processes of converging to infinity remain synchronous and are featured by 

the equation of the same type (only with the changed scale), in spite of the fact that maximums 

are distant at large intervals. 

    This complicated model is capable to explain the qualitative synchronism of processes in very 

far parts of our Universe as a result of ñinflationò after Big Bang. The high degree of global 

correlations reduces the fluctuations leading to destruction of the solution structure. These global 

correlations are modelling coherence of parts of our Universe.  

   Processes with "blow up" appear with necessary completeness and complexity only for some 

narrow set of coefficients of the equation (I). (N>> 1, ɓ> ů +1, ɓåů +1 is a necessary condition 

for appearance of a structure with large number of maximums and their slow coming to the 

common center). It allows drawing an analogy with ñanthropic principleò [26]. The anthropic 

principle states that the fundamental constants of the Universe have such values that a result of 

Universeôs evolution is our Universe with anthropic ñbeingsò capable to observe the Universe. 

   One more fact is worth mentioning: if we want that the ordered state in the model would not be 

destroyed at t=0.9Ű, and would continue to exist as long as possible then exact adjustment is 

required not only for model parameters, but also for an initial state. It is necessary that 

fluctuations arising from the initial state would not destroy orderliness as long as possible. And 

the presence of this rare exclusive state can be also explained by the anthropic principle. 

 

 “Cellular” model of Universe 
 

    It is also interesting to illustrate the complex processes by means of "cellular" model. Discrete 

Hopfieldôs model [27-28] can be used as a good basis. This model can be interpreted as a neural 

network with a feedback or as a spin lattice (a spin glass) with unequal interactions between 

spins. Such systems are used for recognition of a pattern. 

    This system can be featured as a square two-dimensional lattice of meshes NxN which can be 

either black or white (Si=Ñ1). Coefficients of linear interaction between meshes jiJ are unequal 

for different pairs of meshes. They can be chosen so that in the process of discrete evolution the 

overwhelming majority of initial states would transfer in one of possible final states. This set of 

final states (attractors) can be chosen and defined ñby handsò.  
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Let choose lattice attractors to be letters A or B.  

       There are such two initial unstable states which differ by one mesh only (a critical element). 

Thus, one of them has a state as A attractor, and another as B attractor. Such unstable initial 

states clearly illustrate a property of the global instability of a complex system. This instability is 

inherent in a system as a whole, not in its some part. Only some external observer can change the 

value of the critical element and vary the system evolution. Internal dynamics of the system 

cannot do it. Global correlation between meshes of an unstable initial state defines completely a 

final attractor (A or B) of the lattice.  
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      It is possible to complicate the model. Let suppose that each mesh in the lattice featured 

above is such a sub-lattice. We will define evolution of such composite lattice going to two 

stages.  

     At the first stage large meshes do not interact. Interaction exists only in sub-lattices. This 

interaction is the same as for the one-stage model featured above. Coefficients of the linear 

interaction between meshes are chosen so that attractors, as well as its was observed before, are 

letters A or B. Initial states of all sub-lattices can be chosen as unstable and containing the 

critical element. We will perceive the final state A of sub-lattices as a black mesh for a large 

lattice, and the state B of sub-lattices ï as a white mesh. 

   The second stage of evolution is defined as evolution of this large lattice over the same way as 

in the one-stage model featured above. The initial state of the large lattice is defined by the first 

stage. This initial state, appearing at the first stage, is also unstable and contains the critical 

element. For final state of the large lattice to each black mesh, we will appropriate state A of the 

sub-lattices, and for each white mesh we will appropriate state B of the sub-lattices. 

   The initial state of the composite lattice can be chosen always so that an attractor of the two-

stage process will be A.  For every mesh included to A, the sub-lattice state also corresponds to 

A. Letôs name this state of the composite lattice as ñɸ-ɸò. Then this very final attractor can be 

explained by: 

a) global correlations of the unstable initial state 

b) specific selection of all coefficients of interaction between meshes. 

    Let's make the model even more complicated. Similarly to the aforesaid, we will make this 

lattice not two-level but three-level, and the process will be three-stage instead of two-stage. A 

final state will be ñɸ-ɸ-Aò. 

     Let's suppose that prior beginning of the aforementioned three-stage process our composite 

lattice was occupying a very small field of physical space. But as a result of expansion 

("inflation") it was dilated to a huge size. Then the aforementioned three-stage process was 

begun. Thus, it is possible to explain presence of the unstable correlation of the initial state of the 

composite lattice leading to a total state ñɸ-ɸ-Aò. Indeed, before ñinflationò all meshes were 

closed by each other. So the unstable initial correlation can be easily formed under such 

conditions. 

     This three-level composite lattice can be compared to our Universe. Its smallest sub-lattices 

ñAò can be compared to ñintelligent organismsò. Lack of their interaction with the environment 

at the first stage (before formation of the final state ñAò) is equivalent to the active or passive 

protection of internal correlations from external noise. Lattices of the second level in state ñA-Aò 

correspond to ñcivilizationsò organized by ñintelligent organismsò (ñAò) at the second stage. At 

the third stage, ñsupercivilizationò (ñA-A-Aò) is formed by ñcivilizationsò (ñA-Aò). 

     Then global correlations of the unstable initial state of the composite lattice can serve as 

analogues of the possible global correlations of the unstable initial state of our Universe existed 

before its inflation. Coefficients of interaction of the meshes correspond to the fundamental 

constants of our Universe. The initial process of the lattice expansion (before its three-stage 

evolutions) corresponds to Big Bang. The specific selection of interaction coefficients between 

the meshes leading to the asymptotic state ñɸ-ɸ-Aò, and the initial correlations can be explained 

by ñanthropic principleò. Here we remind that the anthropic principle states that the fundamental 

constants of the Universe have such values that the result of Universeôs evolution is our Universe 

with anthropic ñbeingsò capable to observe the Universe. 

  

5. Conclusions 

 
    The phenomenon existence of unpredictable complex (including living) systems is considered 

in the paper.  

    It is shown, that though existence of such systems, apparently, contradicts to the entropy 

increasing law, and actually does not lead to the real contradiction with it. Indeed, for existence 



 60 

of such systems in the real world the very specific boundary conditions are necessary. The 

entropy increase for making of such requirements in real external world much more exceeds the 

entropy decrease observed inside such systems. 

    The possibility of the proof of the Gºdel-like theorem for such systems is shown. It means that 

reductionism (reducibility of the complex system's behavior to fundamental physics laws) does 

not contradict to existence of the principal emergency.  The principal emergency is the existence 

of principal unpredictability of complex system's behavior on the basis of fundamental physics 

laws. This emergency is not result of a system complexity only. 

  It is shown, that this unpredictability is closely connected to existence of the complex 

correlations both inside these composite systems, and with around world. Simple mathematical 

models, illustrating the principal possibility of such correlations are constructed. 
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behavior cannot be understood completely in principle will be the basis of AI. Nevertheless, it 

will not be a barrier for their practical use. 

 

1. Introduction 

 
     Nowadays technologies relating to design of systems of artificial intellect (AI) are actively 

developed in the world. In this paper we would like to consider not tactical but strategic 

problems of this process. Interesting papers on this topic are few now, but they exist [1]. It is due 

to the fact that most of serious experts are occupied with solving tactical problems and often 

does not think about farther prospects. However, the situation at the beginning of cybernetics 

origin was not like that. In those days these problems were actively considered. Therefore, we 

will construct our paper as a review of problems of cybernetics as they were seen to participants 

of the symposium in 1961 [2]. We will try to give the review of these prospects from the point of 

view of the up-to-date physical and cybernetic science and its latest achievements. 

 

2. Analysis of problems 
 

    The principal strategic direction in 1961 has been set by lecture of Stafford Beer ñOn the way 

to a cybernetic factoryò. He sees a control system as some black box with a large quantity of 

internal states. Depending on internal states of the black box, different functions are carried out 

linking its input and output. Among all these functions some optimal function exists. This 

function realizes its operation by optimal way according to some measure of optimality. The 

feedback will be organized between an output of the factory and internal state of the black box 

ensuring optimality of search of the internal state. 

 

 
 

Figure 1. Diagram of control of a factory. 

 

     Here the following three difficulties arise: 

 

1) It is clear that the number of internal states of such black box should be huge to ensure 

realization of all possible functions. For this purpose the author suggests to use some block of the 

substance, possessing huge number of internal states at atomic level. It is something, for 

example, like the colloid system of Gordon Pask. This system realizes reversion of matrixes of 

the astronomical order.    

2) Space of search of such box is huge and the search over all possible internal states is not real 

for reasonable time. Therefore, the strategy which would allow discovering not the most 

optimum solutions but at least just ñgoodò is necessary. At present such strategy is named as 

ñgenetic algorithmò [3] supplied with the random generator. Also the method of heuristics is 



 63 

widely used. [4] It is a set of empirical recipes for the search of optimum between the internal 

states. They are either found from the previous experience or defined by the external expert. 

3) Criteria of optimality cannot be formulated accurately for all cases. Therefore, we may take 

for the ñpurposeò of such box its physical ñsurvivalò. Then it will search for such criteria itself, 

or its operations would be estimated by some external expert.  

    In the specified solutions of problems there is one very basic difficulty. Let our black box has 

n binary inputs and one binary output. Then number of all possible internal states of box is
n22 .  

How large is this number? The answer is given by D.G. Willis in ñSet of realized functions for 

the complex systemsò. The physical calculation made here shows that all molecules of the Earth 

is enough only for creation of the black box with maximum n=155. It does not make sense to 

reproduce his calculation here. The modern physics gives an exact method of calculation for the 

upper bound of memory through entropy of a black hole of corresponding mass [25]. (But it is 

problematic to extract this information because of informational paradox.) The estimation for 

memory, however, will not be more optimistic. It is clear that such number of the inputs is not 

sufficient for controlling over the complex systems. Consequently, the number of possible 

functions realized by box should be regarded as some subset of all possible functions. How can 

we choose this subset? 

   Now the methods based on neural networks [26] or fuzzy logic [27] are actively developed. 

They allow easy realizing many ñintuitiveò algorithms which are used by people. Besides, there 

are well developed methods of training or self-training for them. However, it is shown for both 

methods that any possible function is realized by these methods. On the one hand it is good, as 

proves their universality. On the other hand it is bad, as this redundancy do not allow us to lower 

space of search of the black box when using these methods. 

     In his lecture Willis  offers a solution which is actual even now. He suggests using a subset of 

all functions of n variables. This subset can be realized by a combination of p functions with k 

variables where 

 

p <<2
n
                                                                                                                                            (1) 

k <<n                                                                                                                                             (2) 

 

This class is small enough, so it can be realized. 

 
Figure 2. Exact expansion of switching functions on functions with a smaller number of 

variables. 

                 ʘ) n=6, p=3, k=3                                                     ʙ) n=8, p=5, k=3 

 

     This solution is acceptable for a wide class of problems. For example, the neural network was 

used for recognition of the handwritten digit highlighted on the screen [28]. The screen was 

divided into meshes (pixels). The mesh could be black or white. Thus meshes were divided into 
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groups of neighboring meshes (k cells). Each group arrived on input of the network with one 

output. These outputs were grouped also in k the nearest groups which moved on inputs of the 

network etc. As a result there were only 10 exits which yielded outcome of classification. The 

specified network uses restrictions relating to ñlocalityò of our world. 

    But it is possible to introduce other similar criterions restricting space of search by less hard 

way. For example, we can use only the requirement (1) and not use the requirement (2). Instead 

of (2) we restrict type of used functions, i.e. we create some ñlibraryò of the useful functions. 

    For example, for existing field of the pattern recognition such set of functions already exists. It 

is software packages of functions for images processing. Example of such package is Matlab 

[29]. By combining these functions it is possible to create a large number of the useful features 

for recognition. To select useful superposition of functions, it is possible to use a random search 

of the genetic algorithm. But it can be made also by using human intuition: a person can combine 

these functions so that they would reproduce some intuitively felt feature of an object. The 

person himself cannot mathematically specify this feature without such search. These are human-

machine systems of search. 

  It is worth to note that both creation of such ñlibrariesò and human-machine search are not 

algorithmizable processes. They are based on human intuition. For this reason we think that the 

artificial intellect is closer to Art than to Science. 

   Letôs consider problems which arise when this approach is used: 

1) Those restrictions (ñlibrariesò) which we set on internal states of the black box are human 

formed. It makes this process labor-consuming and restricted by human intuition. 

2)  Human-machine search is more effective than the genetic algorithm but suffers from the two 

above-mentioned problems. 

   Letôs consider the following lecture which is, apparently, the most prophetical and gives a 

trajectory to a solution of these problems: George W. Zopf ñRelation and contextò. 

    His main thought is that for construction of an effective model for artificial intellect we should 

not use some mathematical scientific abstraction like a black box. To construct such model we 

need to use properties of similar systems in the surrounding world.  These are living adaptive 

systems. What their properties allow them to overcome restrictions and problems specified 

above? 

    Their most important property is that such systems are not, like a black box, some external 

objects in relation to the surrounding world. They are inseparably linked within it. (For example, 

Zopf pays attention to the fact that the features used for recognition of the object, or even the 

ñcodeò of neurons of a brain (consciousness) are context-dependent. It means that they depend 

not only on internal state of the object or the brain, but also on their external environment.) It 

explains efficiency of restrictions on realized internal states of adaptive systems. They do not 

need to invent some ñlibraryò of search functions - it is already given to them in many aspects 

from their birth. These systems have happened from the surrounding world and are relating to it 

already at their birth by a set of hidden connections. So, their ñlibraryò of search functions is 

quite effective and optimal. The same is true for algorithms of adaptation ï unlike ñgenetic 

algorithmsò, they are already optimally arranged with respect to the surrounding world.  It allows 

preventing search and verification of large number of unsuccessful variants. Moreover, 

ñpurposesò of adaptive systems are not set by somebody from the outside. In many aspects they 

are already arranged with respect to their search algorithms and surrounding world restrictions. 

   We often perceive events in the world surrounding us as a set of independent, casual 

appearances. Actually, this world reminds a very complicated mechanism penetrated by a set of 

very complex connections. (ñAccidents donôt happen accidentallyò.) We cannot observe all 

completeness of these connections. 

   At first, as we are only a small part of this world, our internal states are not sufficient for 

mapping all its complexity. Secondly, we inevitably interact with the surrounding world and we 

influence it during observation. The modern physics states that this interaction cannot be made to 

naught in principle [6-12]. So to model and to consider this influence exactly, we need to 
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observe not only the external world but we need to observe ourselves too! Such introspection 

cannot be made completely in principle at any our degree of internal complexity. Introduction of 

physical macrovariables only reduces acuteness of the problems but does not resolve it. 

   Nevertheless, as it was already mentioned above, we are a part of the surrounding world and 

are related to it by the set of connections. So we are capable on such effective behavior. It creates 

illusion that we are capable effectively to foresee and to calculate everything. This property of 

adaptive living systems may possibly be referred to as superintuition
3
 [13]. It considerably 

exceeds adaptive properties of any black box developed by purely scientific methods. 

  Hence, we should build our future systems of AI also on the basis of some similar ñphysicalò 

adaptive systems possessing superintuition. We will give here the list of properties of such 

systems [9-10, 17-18]. 

1) The random generator of such systems (making selection of internal state) should not generate 

just random numbers. Such numbers should be in the strong connection (correlation) both with 

the surrounding world and with internal state of AI system, ensuring superintuition. 

2) The internal state of the system should be complex. It should be not equilibrium but 

stationary; i.e. it should correspond to the dynamic balance. It is like a water wall in a waterfall. 

The internal state should be either for classical mechanics systems correlated, unstable (or even 

chaotic) or for quantum mechanics systems quantum coherent. Such systems are capable to 

conserve the complex correlations either inside of themselves or between themselves and the 

surround world. 

3) The internal state of the system should be closed from external observation. It is achieved, at 

first, by high internal complexity of the system. Secondly, the system should change strongly the 

internal state and behavior at an attempt of external observation. This property is intrinsic for 

both unstable classical systems (close to chaos), and quantum coherent systems. 

4) The system should be strongly protected from an external thermal noise (decoherence).  

5) The system should support the classical unstable or quantum coherent state and be protected 

from the external thermal noise not so much passively as actively. I.e. it should not be some hard 

armour or low temperatures. Rather it should be some active metabolic process. The system 

should be in a stationary dynamic balance, instead of thermodynamic equilibrium. So the vertical 

wall of water in a waterfall is supported by its constant inflow from the outside.  

6) The main purpose of such system should be its ñsurvivalò. 

    To use similar systems, we need not to know in details their internal states and algorithms of 

operation which they will establish at interaction with the surrounding world. Moreover, trying 

to make it we will strongly risk breaking their normal operation. The only thing we should be 

concerned in is that the purposes which they pursue for ñsurvivalò are coinciding with the 

solution of problems which are necessary for us. 

      We see that physics becomes necessary for creation of such cybernetic AI systems. Are there 

prototypes of such systems nowadays? Many features of the abovementioned systems are 

inherent to quantum computers [19-20, 24] or to their classical analogues, namely classical 

                                                 
3
 The study was conducted by Russian specialists under guidance of Valeri Isakov, a mathematician who specializes 

in paranormal phenomena. They were not able to obtain data from domestic flights, so the researchers used Western 

statistics. As it turned out over the past 20 years, flights which ended in disaster were refused by passengers by 18% 

more in number than in case of normally ended flights. "We are just mathematics who revealed a clear statistical 

anomaly. But mystically-minded people may well associate it with the existence of some higher power"- quoted 

Isakov, "Komsomolskaya Pravda". 

http://mysouth.su/2011/06/scientists-have-proved-the-existence-of-guardian-angels/; 

http://kp.ru/daily/25707/908213/ 

ñThat was Stauntonôs theory, and the computer bore him out. In cases where planes or trains crash, the vehicles are 

running at 61 percent capacity, as regards passenger loads. In cases where they donôt, the vehicles are running at 76 

per cent capacity. Thatôs a difference of 15 percent over a large computer run, and that sort of across-the-board 

deviation is significant. Staunton points out that, statistically speaking, a 3 percent deviation would be food for 

thought, and heôs right. Itôs an anomaly the size of Texas. Stauntonôs deduction was that people know which planes 

and trains are going to crashé that they are unconsciously predicting the future." 

Stephen King, "The Stand" (1990) 

http://mysouth.su/2011/06/scientists-have-proved-the-existence-of-guardian-angels/
http://kp.ru/daily/25707/908213/
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unstable computers [14] and molecular computers [16]. Besides, there is a lot of literature where 

synergetic systems modeling specified above property of living systems are constructed ñon 

paperò. In quantum field it is [21-23, 30-32], and for classical unstable systems [15]. 

   Here two problems arise:  

 

1) Which of the above-mentioned objects will be appropriate in the best way for creation of AI 

systems?  

2) What purposes necessary for ñsurvivalò of these systems do we need to put? Indeed, these 

purposes must be coinciding with solution of our problems. 

   The solution of these two problems is not an algorithmizable creative process. It makes again 

artificial intellect to be closer to Art than to Science. Really, usually we cannot even know how 

such systems are arranged inside. We can define their restrictions only. It is necessary to direct 

these systems to solve problems useful for us. We often are not capable even to understand and 

to accurately formulate our own purposes and problems. Without all this knowledge the Science 

is powerless. So creation of such systems more likely will be related to writing music or drawing 

pictures. Only ñbrushesò and ñcanvasò will be given to us by the Science. 

  Are AI systems capable to solve the two abovementioned problems instead of us? For the first 

problem such chances exist, but the second one cannot be solved without us in principle. Indeed, 

nobody can know better than us that we want. But both these problems are interconnected. 

Therefore, people always will have to do intellectual job. It is true also for the case that our 

ñintelligent assistantsò will be very powerful. 

 

3. Conclusion 
 

Perspective of the future of artificial intellect (AI) is considered here. It is shown that AI 

development in the future will be closer rather to art than to science. Complex dissipative 

systems whose behavior cannot be understood completely in principle will be a basis of AI. 

Nevertheless, it will not be a barrier for their practical use. But a human person inevitably will 

conserve his important role. It is impossible to completely to exclude him from the process. 
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