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1. Motivation and Introduction

By way of introduction I begin with justifying the statement The chronometric
theory by I.Segal is the crowning accomplishment of special relativity which I
made in the title of my earlier survey article [Le93].

The term \world" which we shall use below is close to the term \space-time"
[SaWu, p.27]; however, it does not assume that we �x a particular Lorentzian
metric tensor �eld from the conformal class [Se76, GuSt]. Since the present article
is dedicated mostly to the conformal compacti�cationM0 of the Minkowski world
M0 and its universal coverings, I shall not go into the general de�nitions specifying
space-times and causality.

I begin with Newtonian worldN, namely, a 4-dimensional aÆne space equipped
with a \Newtonian causal structure" [Se76, p.23]. The latter is de�ned as the
family fJ+x : x 2 Ng of closed half-spaces with parallel boundary hyperplanes.
An \event" x belongs to its \future set" J+x . The symmetry group S is the 11-
dimensional Galilean group (including scaling) [GuSt]. The group S yields the
Euclidean geometry of absolute 3-space.

Next, Minkowski world M0 is de�ned as 4-dimensional aÆne space, but its
causal structure fJ+x : x 2 M0g consists of elliptic convex cones such that J+y is
obtained from J+x by parallel translation z 7! z+ y�x. The symmetry group P is
the 11-dimensional Poincar�e group (included scaling). It was H. Minkowski who
insisted on the \absolute" status of space-time (instead of that of space). He also
raised the question of transforming the structures involved into less degenerate
ones (for his \anti-deformation" thesis, see e.g. the Introduction of [�rSe]). The
well-known result by A. D. Alexandrov (see e.g. [Gu] for exact references on the
subject of this and other matters discussed in this section), later rediscovered in a
weaker version by E. C. Zeeman, originated the method of deriving the geometry
from the causal structure. The usage of P instead of the \standard" 10-dimensional
P0 is motivated by this very method when applied to M0. It is worth noting that
matters are quite di�erent with the symmetry group of the Newtonian world: there
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are many transformations of N which preserve the causal structure even though
they do not belong to S.

Finally we discuss brie
y the main aspects of chronometry. Its worldM consists
of the Einstein space-time E as the underlying conformal manifold. The metric on
E is dt2 � ds2, where t is time and ds2 is the Euclidean on S3 induced by the the
standard immersion of S3 into R4 . A future time direction in E is �xed, and a
\future cone" appears in every tangent space of M. In M one can de�ne \future
sets" [Se76] in a fashion similar to the previous cases. This structure gives rise

to the symmetry group eG which is now the universal covering of SU(2; 2). It
acts globally on M. These and other notions will be de�ned in the next section
in a greater detail. The Minkowski world is conformally imbedded into M via
the \Cayley transform". The radius R of the space S3 does not depend on the
chosen metric from this conformal class, i.e., the metric in which it is calculated.
In other words, R is a conformal invariant [Se82]. It is convenient to use natural
chronometric units in which R, the speed of light c, and the Plank constant �h are
equal to 1. We denote by eK the 7-dimensional Einstein isometry group. A subgroup
of a Lie group is said to be essentially compact if its image under the adjoint
representation is compact. Now eK is a maximal essentially compact subgroup ofeG It consists of translations in time and rotations in space (! 2:2)1.

Several features that important in applications; I shall indicate them without
de�ning explicitly the mathematical de�nitions of the notions involved. I shall
reproduce a small piece from [Se91] almost without changes.

The chronometric energy H is the generator of time in E. Relative to any point
of observation inM, the Minkowski worldM0 is imbedded P-covariantly, and the
relativistic or Minkowski energy calH0 is the generator of time in M0 relative to
the Lorentz frame in M0, which, at the point of observation, osculates the frame
de�ned by the space-time splitting in E. For any unitary positive-energy represen-
tation of eG, the corresponding Einstein energy exceeds the Minkowski energy by an
amount that vanishes in�nitesimally but increases with the spatial support of the
state in question in terms of the appropriate quantum mechanical consideration.
The inertial mass of a cosmologically long-lived particle is represented in accor-
dance with Mach's principle as its interaction energy with the cosmic backround
and is correspondingly only eK-invariant, implying approximate local P0-invariance
of its rest mass.

Additional background on chronometry is given in Segal's book [Se76] and
[PS-I,II; P-III, P-IV, �rSe, Se86]. In these articles the physical particles have been
modelled, in accordance with the thrust of decades of theoretical investigation in
this area, by induced bundles (! 4:1) over causally oriented space-times.

Let me now conclude with the justi�cation of the expression \ crowning ac-
complishment of special relativity". Firstly, the conformal group is semisimple,
in constrast with the Poincar�e group . Hence it cannot be regarded as resulting
through a contraction process from a non-isomorphic Lie group of the same di-

1 I shall try to make the presentation as self-contained as possible. Cross-references in
the text are indicated by arrows !.
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mension. Secondly, it arises as maximal local causal group of the special relativistic
world in which only the 11-dimensional Poincar�e group can be globally realized.
When compared with other theories based on the world of special relativity or
particular space-times of general relativity, Chronometry has other preferable fea-
tures; we mention only a few:
|the absence of the �xed Lorentzian structure which seems to be connected with
a concrete metric observer [Se76] in the world under consideration,
|a better uni�cation of elementary particles (! 6:1� 6:3),
|the existence of leaking (6:1; 6:3) which gives kinematic explanation of several
decays (6.2, 6.3).

In discussing chronogeometry it is worthwhile to mention that there are exactly
four 4-dimensional real Lie algebras which admit an invariant nondegenerate form
of Lorentzian signature [GuLe, Le860]. Such a form is a well-known to correspond
to a biinvariant metric on the Lie group in question. The above and several other
facts (see [Se76, Se86, GuLe, Le86, Le860, Le93] and references therein) support
the conclusion that M is the \basic world" of Nature and that it is, together with
the Minkowski space-time, one of the most important ones in the applications.

Summing up we note that chronometry is derived from very general consider-
ations of causality, stability, and symmetry. Therefore, it is somewhat abstract,
and its empirical implications call for further development. Indeed I consider it as
one of the my goals in the present survey to convince the specialists in relativity
that Chronometry is an e�ective point of departure for cosmology and that they
should take part in its implementation and further development. Chronometry,
like special relativity and quantum mechanics, may initially appear contradictory
to accepted doctrine. But its application to extragalactic astronomy (! 7, [SeNi]
and references therein) has shown that it is capable of precise and detailed predic-
tions regarding the cosmic redshift (! 7) and other directly measured quantities,
in spite of its lack of adjustable cosmological parameters.

Remark. I use the opportunity to mention that the proof of Lemma 2 in [Le860]
should be slightly modi�ed. Notably, the subspace S occuring in this article need
not be a subalgebra. I am indebted to A. Kuzemchikov who has pointed this out
to me.

2. Synthetic Geometry

2.1. The \Hermitian" model of the Minkowski world

Fix the following representation of Pauli matrices:

�0 =

�
1 0
0 1

�
; �1 =

�
0 1
1 0

�
; �2 =

�
0 �i
i 0

�
; �3 =

�
1 0
0 �1

�
:
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The set of all 2 by 2 Hermitian matrices is denoted by H; each X from H has a
unique decomposition

X = xm�m: (�)

Here and henceforth we assume the Einstein summation rule. (We allow also the
use of lower indices for coordinates of the vectors under consideration). Let an
orthonormal coordinate system with basis e0; e1; e2; e3 be chosen in the Minkowski
worldM0. The map fromM0 to H which takes x = xmem into X via equation (�)
is a linear bijection. Then detX = x0

2 � x1
2 � x2

2 � x3
2. Let the future cone in

M0 of an event x be denoted by J+x . Then the causal relation y 2 J+x inM0 holds
if and only if the matrix Y �X is positive semide�nite [Se76]. The restricted 10-
dimensional Poincar�e groupP0 is the semi-direct productP0 = H��0

of the vector
groupH and the restricted 6-dimensional Lorentz group �0. Its universal coveringeP0 equalsH�SL(2; C ), where (F;L) 2 H�SL(2; C ) acts inH byH 7! LH �LT+F .

The simply connected Poincar�e group including scaling is denoted by eP. It is
the semi-direct product of H by the group e� = R1 � SL(2; C ), and the element

(F; (t; L)) 2 eP acts on H as H 7! etLH �LT + F with t 2 R
1 and (L; F ) 2 eP0. The

conventionally de�ned 7-dimensional Lorentz group including scaling is denoted
by �.

It is a well known fact that �0 �= SL(2; C )=f1;�1g Accordingly, the groups e�,eP, and eP0 doubly cover �, P, and P0), respectively.
Next we �x the Hermitian form h�; �i in C 2 :

hx; x0i = x1�x
0

1 + x2�x
0

2: (1)

The groupU(2) is the totality of those linear transformations of C 2 which preserve
(1). The group U(2) is generated by exponentials of matrices iF where F 2 H;
that is, the Lie algebra of U(2) is exactly iH.

In the complex linear space C 4 with a �xed decomposition as C 2 � C 2 we
introduce the form

hhx� y; x0 � y0ii = hx; x0i � hy; y0i: (2)

Then, by de�nition, SU(2; 2) is the totality of those linear unimodular transfor-
mations of C 4 which preserve (2). We abbreviate SU(2; 2) by G. The elements of
G are written as suitable block matrices�

A B
C D

�
; A; B; C D 2M2(C )

The following (\linear-fractional") action of G on U(2) plays the crucial role
in the further development of the theory:

gZ = (AZ +B)(CZ +D)�1; g =

�
A B
C D

�
; Z 2 U(2): (3)

There exists a bi-invariant �eld of (tangential) elliptic cones on U(2) [Se76]
depending on one real parameter [GuLe, Le860] which may be interpreted as the
speed of light c. If units are chose so that c = 1, then the cone at 1 2 U(2) becomes
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essentially the one already �xed in H (up to multiplication by i when passing from
H to the appropriate Lie algebra) .

Segal's world M which has already been mentioned in the introduction is
de�ned as the universal cover of U(2). The causal structure of M thus arises
naturally. Recall that the static Einstein universe E is one of the most signi�cant
space-times of General Relativity. Its underlying topological space R1 � S3 is the
same as that ofM. The prescribed Lorentzian metric of E equals dt2� ds2, where
t 2 R1 , and ds is the element of arc length on S3. This Lorentzian metric de�nes
the same cone �eld as already introduced on M.

The action (3) on U(2) is canonically pulled back to a eG-action on M. The
fundamental characteristic of the latter is that it preserves the \in�nitesimal"
causal structure (consisting of tangential future cones) as well as the \global" one
(consisting of the future sets in M itself). Alternatively, the group of transforma-
tions satisfying these condition (the causal group) is the group of all conformal
transformations [Se76, Le87 and references therein].

We use the following notation:

g�1 =

�
A0 B0

C 0 D0

�
;


 = 2�1=2
�

1 1
�1 1

�
:


�1g�1
 =

�
A1 B1

C1 D1

�
;


�1g
 =

�
A00 B00

C 00 D00

�
: (4)

Exercise 1. The following relations hold:

A00 = (1=2)(A�B � C +D); A = (1=2)(A00 +B00 + C 00 +D00);

B00 = (1=2)(A+B � C �D); B = (1=2)(�A00 +B00 � C 00 +D00);

C 00 = (1=2)(A�B + C �D); C = (1=2)(�A00 �B00 + C 00 +D00);

D00 = (1=2)(A+B + C +D); D = (1=2)(A00 �B00 � C 00 +D00):

A0 = A�; A00 = D�

1 ;

B0 = �C�; B00 = B�

1 ;

C 0 = �B�; C 00 = C�1 ;

D0 = D�; D00 = A�1: ut
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Exercise 2. The following conditions are equivalent for an element g 2 SL(C 2�
C 2 ) of the form (3). Each of the two is necessary and suÆcient for g to lie in
SU(2; 2):

(i) A�A� C�C = 1; B�B �D�D = �1;

A�B � C�D = 0:

(ii) For an element of the form (4) the following relations hold:

A00
�

D00 + C 00
�

B00 = 1; A00
�

C 00 + C 00
�

A00 = 0;

B00�D00 +D00�B00 = 0: ut

2.2. Imbeddings of M0 into �M0 and M

These two imbeddings are de�ned and considered as canonical ones. As a conse-
quence, the causal group eP of M0 is carried into a subgroup of the causal groupeG of the world M. Interestingly, the isotropy group in the action on M of eG is
the causal group of M0.

Theorem 2.1 [PS-I]. eG acts causally and transitively on M, with isotropy

group isomorphic to eP. ut

The proof in [PS-I] proceeds via several lemmas which we provide with mi-

nor modi�cations and without proofs. The isomorphism from eP to the isotropy
subgroup of the point p = (�;1) in M is denoted by � and will be used later.
Depending on the context, M0 stands for the unitary group U(2).

Lemma 1. The Cayley map c :M0 !M0, de�ned by the equation

cF = (1+ iF=2)(1� iF=2)�1; F 2 H;

is causal. Its image is dense and open in M0. ut

The eG-action on M is de�ned canonically in pull-up terms: if ~g2 eG, ~z 2 M,
and if �:M ! U(2) and 
: eG! G are the converings, then an element ~g~z 2M is
de�ned uniquely by the condition

�(~g~z) = 
(~g)�(~z):

From the introduction we know that the underlying topological space of M is
R1 � S3. More concretely, if M is identi�ed with R � SU(2) �= R1 � S3, then

�(t;W ) = eitW; t 2 R; W 2 SU(2):

The covering 
 will be described later.
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The terminology maximal essentially compact connected subgroup of G was
introduced in the Introduction; we shall brie
y speak of MECC subgroups. All of
them are conjugate by some element of G.

Lemma 2. A MECC subgroup eK of eG is isomorphic to

R
1�SU(2)�SU(2):

Normalizing eK thus and � as above, the following equations hold for ~k = (s; U; V )
and ~z = (t;W ):

~k~z = (s+ t)�UWV �1; 
(k) =

�
eis=2U 0

0 e�is=2V

�
: ut

Lemma 3. There exists a unique isomorphism � of eP into G such that the
equality �(g)c(H) = c(gH) holds for all g 2 eP and H 2 H. ut

The constructive proof in [PS-I] produces for (t; L; F ) from eP, in particular,

�(T ) = 


�
et=2L (i=2)e�t=2F (L��1)
0 e�t=2(L��1)

�

�1:

Lemma 4. �(eP) is the component of the identity in G�1. ut

Lemma 5. Let Z denote the center of G. Then G�1 = �(eP)Z: ut

Several statements follow from Theorem 2.1 which are of suÆcient importance
to be reproduced here.

Corollary 2.1.1. The actions of eP on H and of the isotropy subgroup of eG on
an open orbit in M de�ne identical causal transformation groups: H is causally
equivalent to the orbit via a map intertwining the respective actions of eP. ut

Corollary 2.1.2. The center of eG is generated by the two elements of eK:

� = (�; e�i� ;1); � = (0; ei�; ei�): ut

Remark 1. It follows that the center of eG is of the form Z1 � Z2, where the
Z2 component acts trivially on eU(2).

Corollary 2.1.3. Two points of M are left �xed by the same isotropy subgroup
of eG if and only if one is the transform of the other by an element of the center
of eG. ut
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2.3. Discrete Causal Symmetries

Any transformation of M0 reverting the causal structure is called anticausal. The
\time reversal" T0: (x

0; ~x)! (�x0; ~x) in M0 is a typical example of an anticausal
transformation. If Minkowski world is represented by H, then the group of all
causal and anticausal transformations on is denoted by G+(H). It is generated
by the connected component G+

0 (H) of the identity together with T0 and space
reversal P0: (x

0; ~x) 7! (x0;�~x). Note G+(H)=G+
0 (H) �= Z2 � Z2.

P+ (respectively, G+) denotes the group generated by P (respectively, G) and
these discrete symmetries.

We now de�ne eP+ and eG+: By a basic pair of discrete symmetries (P; T )
at a point H of H we mean an ordered pair of causal, respectively, anticausal
transformations on H of the form:

P = S�1P0S; T = S�1T0S;

where S is a transformation in P that carries H into 0 and P0 and T0 are the
transformations on H:

P0 : H 7! trH �H; T0 : H 7! H � trH:

Since P0 and T0 are causal and anticausal, respectively, the same must be true
of P and T . Note that P 2 = 1 = T2;PT = TP. It follows that a basic pair
of dicrete symmetries at a given point is unique within conjugation by a causal
transformation connected to the identity that leaves the point �xed.

P and T generate F~=Z2�Z2. The semi-direct product of P with F gives P+.
The action of F as a group of automorphisms in P is canonically extended to an
action on eP and the semi-direct product of F with eP relative to this action forms
the universal cover eP+: The natural projection of eP+ onto P+ is independent of
the choice of a basic pair and of a base point H .

The notion of a basic pair of discrete symmetries at a point is now canonically
extended to U(2). Introduce the following transformations of U(2):

P0 : U 7! (detU)U�1; T0 : U 7! (detU)�1U:

A basic pair of discrete symmetries at a point V of U(2) is de�ned as an ordered
pair of

P = S�1P0S; T = S�1T0S;

where S is a transformation inG that carries V into 1. Such a basic pair intertwines
with one on H, when V is in the range of the caley map (! 2:2). It follows from
this that the basic pair of discrete symmetries at a point of U(2) is unique within

conjugation by an element of G leaving the point �xed. One gets eG+ as the semi-
direct product of F with eG, where the action of F on eG is de�ned by a canonical
extension to eG of the action of F on G just de�ned.
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Corollary 2.1.4. eG+ acts on M causally or anticausally, extending the action
of eG given in Theorem 2.1, and with isotropy subgroup eP+. Moreover, there is
a causal equivalence between an open orbit of this isotropy group and H that in-
tertwines the respective actions of eP+ on them, canonically identi�able with that
given in the theorem. ut

In the proof in [PS-I] the � (! 2:2) is extented to eP+ with the conservation of
the intertwining relation of the theorem. The � of the theorem extends similarly.

Note that Corollary 2.1.2 does not extend. The center of eG+ is generated by
�2 and �. Due to its failure to commute with P , the element � is no longer in the
center. In terms of the connected group, the result may be stated as follows.

Corollary 2.1.5. The elements � and � of the center of eG are both invariant
under T , and � is invariant under P , but P�1�P = ��. ut

Remark 2. Thus every causal or anti-causal transformation onM0 corresponds
to a unique such transformation on M that agrees on M0 regarded as imbedded
in M causally, with the given transformation.

2.4. More on Chronometric Geometry

The map (eit; V ) 7! eitV : U(1)�SU(2)! U(2) is a double covering. Denote the
domain manifold by M(2). It is equipped with an (in�nitesimal) causal structure
and the parametrization (u�1; u0) � (u1; u2; u3; u4) subject to the condition that
u2
�1+u

2
0 = u21+ � � �+u

2
4 = 1. Here is the presentation of a general element in U(2):

(u�1 + iu0)(iu1�1 + iu2�2 + iu3�3 + u4):

When M0 is embedded into U(2) via the Cayley map then the coordinates
x0; x1; x2; x3 inM0 agree with the um(m = 0; 1; 2; 3) within terms of second order
in the xm, (! 3:3).

Note that although from a Minkowskian standpoint, (�;1) appears in�nitely
distant in time and (0;�1) appeares in�nitely distant in space, from the point
of observation (0;1) which corresponds to the origin in M0, they both cover the
same point �1 of U(2); the space-time separation in M is only in�nitesimally the
same as that in M0.

Four presentations of the in�nitesimal causal symmetries are given in Table I
of [SeJa]. It is presupposed there that the real projective quadric

q2
�1 + q20 � q21 � q22 � q23 � q24 = 0;

where the qm parametrize a point in projective 5-space) has a unique causal struc-
ture invariant under the group of projectivities that leave it �xed (within reversal)
which is locally SO(2; 4) and is equivalent to U(2) [Se76]. The vector �elds on
U(2) corresponding to the operators

�sqs@m � �mqm@s



86 A.V. Levichev

are consequently in�nitesimal causal symmetries and, when lifted to M(2), are
denoted as Lsm, forming the entries of Table I, column 1 (here and further on,
the row � of the six elements �m equals (1; 1;�1;�1;�1;�1)). Column 2 gives the
expressions for the Lsm as linear combinations of the Xm where the latter are
the generators of one-parameter groups of transformations lifted from the action
U 7! U exp(it�m) on U(2). Expressions for the Xm in terms of the Lsk are:

X0 = L�10;

X1 = L14 � L23;

X2 = L24 � L31;

X3 = L34 � L12:

In the third column of Table I the Lsm are antirepresented as concrete matrices in
su(2; 2), with commutation relations (3.1) below. The fourth (and the last) column
of Table I expresses Lsm as vector �elds in M0. The 
at limit of the Lsm is seen
from Column 4 by replacing xm by xm=R in which R is the \radius of the universe"
S3 in laboratory units, then rescaling Lsm appropriately, and �nally forming the
limit as R!1:

3. Analytic Geometry

3.1. Preliminaries

It is convenient to make an explicit distinction between a generator of the group
G and the corresponding vector �eld on M. Generators of the abstract group
will be denoted by b�ace letters; corresponding vector �elds on M by the same
Roman capital letter. Note that the mappingX 7! X from G to the space of vector
�elds on M is an anti-representation of the Lie algebra G. Thus, in terms of the
SO(2; 4)-generators Lim, the commutation relations

[Lim;Lmk ] = ��mLik (1)

are opposite in sign compared with the ones between the corresponding vector
�elds Lim:

[Lim; Lmk] = �mLik:

If the Lsm are regarded as elements of su(2; 2) as in part of Table 1 of [SeJa], they
satisfy the set (1) of commutation relations.

3.2. In�nitesimal Causal Symmetries in Polar Coordinates

The Table I is supplemented by presentation of vector �elds Lsm in polar coor-
dinates (which are convenient when regarding M) in Table II of [PS-I]. These
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coordinates have the following relations to the um:

eit = u�1 + iu0; u1 = sin � sin � cos�; u2 = sin � sin � sin�;

u3 = sin � cos �; u4 = cos �;

here 0 � �, � � �, 0 � � � 2�:

3.3. Relations between the xm and the um

The standard imbedding of M0 into M takes an (x0; x1; x2; x3) to (t; U), where

u�1 = p(1� x2=4); uj = pxj ; u4 = p(1 + x2=4);

p = ((1� x2=4)
2
+ x0

2)
�1=2

; eit = u�1 + iu0;

U = u4 + u1b1 + u2b2 + u3b3; � � < t < �;

and bm stands for i�m, (! 2:1). This mapping, followed by the covering map
of M onto M(2) (whose coordinates are the um) is one-to-one. A point of M(2)

corresponds to a point ofM0 if and only if u�1+u4 > 0; the Minkowski coordinates
are recovered by the equation xm = 2um(u�1 + u4)

�1
.

The function p is strictly positive onM0 and is extended smoothly toM(2) by
p = (u�1 + u4)=2, and then to M via polar coordinates (! 3:2).

3.4. Expressions for the Right-
and Left-Invariant Symmetries

The above introduced vector �elds Xm are left-invariant on eU(2) though genera-
ting right translations on it. In Table III of [PS-I] the corresponding generators
Ym of left translations are presented (as well as the Xm) as linear combinations
of the Lsk and as concrete vector �elds in polar coordinates. Their commutation
relations are given therein.

3.5. Actions of Relevant Vector Fields on the um

Table IV in [PS-I] gives Lum for various vector �elds L involved.

3.6. Basic Flat and Inverted Generators

Conformal inversion inM0 is de�ned as the map x 7! 4x=x2, where de�ned. This
map extends uniquely to the everywhere-de�ned smooth map U 7! �U=detU on
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U(2). A corresponding map on M is ambiguous within an element of the center

of eG. In [PS-I] this element is standardized and causal inversion is de�ned on
M as the map (t; V ) 7! (�t;�V ). Conformal inversion on M0 carries the @m
into vector �elds @̂m that are sometimes called \special conformal (in�nitesimal)
transformations" when extended by continuity to be everywhere de�ned on M0.
The generators of the Lie algebra of eG that correspond to the vector �elds @m and
@̂m onM0 are called the basic 
at and inverted generators, and denoted as Tm and
T̂m, respectively. In these terms the relation L�1m = Tm � T̂m (m = 0; 1; 2; 3)
stands. In Table V of [PS-I] these eight generators are expressed in terms of the
Lsm and in terms of the @m.

3.7.Metrics, Measures, Forms

The following objects are introduced as standard in the corresponding section of
[PS-I]: The 
at metric on M0, the curved metric on M, the 
at measure in M0,
the curved measure in M, and so on.

3.8. Enveloping Algebra Relations

Let us use the following notations for designated elements of the universal envelop-
ing algebra E of the Lie algebra G:

S = L�14; Lf = T2

0 �T2

1 �T2

2 �T2

3;

4 = (X2

1
+X2

2
+X2

3
+Y2

1
+Y2

2
+Y2

3
)=2;

Lc = X2
0 �4:

The curved or chronometric (respectively: 
at or relativistic) Hamiltonian H (re-
spectively: H0) is de�ned as the image (up to multiplication by i) of X0 (respec-
tively: of T0) under the corresponding representation.

The following relation holds in E :

4Lf = [S;Lc] + [S; [S;Lc]]=2:

For a given element Q of E , the corresponding di�erential operator on M,
obtained by extending X 7! X as an antirepresentation, is denoted by the same
(non-b�ace) letter.

The following relation holds:

[S;Lc] = �2u�1u4Lc � 2u0u4X0 + 2u�1(u1X1 + u2X2 + u3X3):
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3.9. Scale Actions.

It is mentioned in [PS-I] how useful the next statement is. It can be proved via
using p = (u�1 + u4)=2 and Table IV.

Scholium 3.1. For any real constant k; Spk = �kpk(1�u�1u4): Moreover,
if g = etS ; then�

@
@t

�
[d4(g

�1u)=d4u]t=0 = �4u�1u4;
and �

@

@t

�
[d3(g

�1u)=d3u]t=0 = �3u�1u4:

The reader is referred to Section 3.7 for the notions involved. The 4- and 3-forms
d4u, d3u on M are introduced in [PS-I].

4. Conformal group actions in induced bundles

4.1. Basic constructions and applications

Let us describe brie
y the notion of an induced representation. Let G be a Lie
group and H a closed subgroup. Set X = G=H = fgH : g 2 Gg and assume that
G acts on the left on X . Let (g; f) 7! gf :H � F ! F denote a linear action of
H on a �nite dimensional vector space F . In G�F we introduce an equivalence:
(g; f)�(gh�1; hf) f2F , h 2 H . The factor space E = G�F=� is traditionally
denoted by G�HF .

Let � denote the projection (g; f)7!g and �1:G ! E and �2:G ! G=H the
orbit maps. We de�ne �:E ! G=H by the commutativity of the following dia-
gram:

G� F
�

���������! G
�1

??y ??y�2
E ���������!

�
G=H:

E becomes a vector bundle over G=H with a �bre F and the projection �, the
so-called induced bundle. The right action

(G� F )�G! G� F; (g; f)g1 = (g1
�1g; f)

induces a right G-action (a; g1)7!ag1:E �G! G.
Let S denote the vector space of all C1-sections of the induced bundle. Now

we are ready to de�ne an induced representation U:G! Hom(S;S),

Ug(s)(x) =
�
s(g�1x)

�
g�1: (1)
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The linear operator S(g; x) in Theorem 4.1 of [PS-I] is then de�ned for each
g 2 G, x 2 X . It is a bijection from the �bre over g�1x onto that over x. The
initial F is identi�ed with ��1(x0), x0 = H 2 X = G=H .

Remark 1. The notion of induced representation remains somewhat vague in
[PS-I, p.99], and no reference is mentioned. It is clear from Segal's other publica-
tions that Mackey's concept of induced representation is meant whose construc-
tion I have just reproduced, mainly drawing from [Ki].

Remark 2. [PS-I, pp.98{99]. If one uses the apparatus of parallelization, then it
is possible to replace the space S by the space of all smooth functions with values
in a �xed vector space F . The conventional treatment of physical �elds over M0

may be regarded as based on the natural identi�cation of spin spaces (i.e., spaces
of inducing representations, see below) over di�erent points of M0 that derives
from the action of the vector group on M0. In the case of M it is convenient to
use also the left curved and the right curved parallelizations, both derived from the
representation of M as universal cover of U(2) w.r.t. action of M on itself.

The following paragraphs reproduce with minor modi�cations several construc-
tions and statements from [PS-I].

The situation there is more structured since the initial homogeneous space is a
Lie subgroup N of G. We denote by � the action of G on N which we considered
earlier. It is assumed that �(x)y = xy whenever both x and y are in N . The
\parallelization map" L sends an abstract section 	 to the vector-valued function
 on N :

 (x) = S�1(xx�10 ; x)	(x):

WhileU stood for the induced action on non-parallelized sections, the \parallelized
action" U is now de�ned by

U(g) = LU(g)L�1:

It turns out that for some g� 2 H , using the notation R(h)f = hf we have

U(g)( )(x) = R(g�) (�(g�1)x): (2)

Theorem 4.1. Let R be a �nite-dimensional representation of the stability sub-
group P at the point x0 2 N . Then (2) holds for the R-induced action of G with

g� = x0x
�1g(�(g�1)x)x�10 :

Remark 3. There are other approaches to induced actions, see e.g. [PaSc], where
the induced representation is produced on a space of vector-valued functions from
the start; but that approach seems more remote from the basic ingredients of the
subject.

Corollary 4.1.1. Theorem 4.1 holds with any of the following modi�cations in
the hypotheses:
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(i) The representation R may be projective,
(ii) The groups G and N may be local, and R a local representation of Gx0 .
(iii) The data, i.e., G;N;Gx0 , and the action, are given purely in�nitesimally.
(iv) The same as (iii) when the connected components of G;N, and R are

given purely in�nitesimally, but also discrete elements of G (forming a �nite group
modulo the connected component) are given that are in Gx0 , and �x the unit of
N . ut

The notation g � g1 for the elements from the covering group of Gadj means
that g1 = cg for some element c from the center of the covering group. In Corol-
lary 4.1.2 of [PS-I] it is computed that, , in particular, in the notation of the
Theorem,

g� � (detZW�1)
1=4

�
Z�1AW �Z�1B
�CW D

�
;

where

W = (A0Z +B0)(C 0Z +D0)
�1
;

g�1 =

�
A0 B0

C 0 D0

�
:

In Corollary 4.1.3 of [PS-I] g� is computed for various discrete elements in-

volved. In the subsequent statement Corollary 4.1.4, g� is calculated for g 2 eK.
One of the following statements (Corollary 4.1.6) introduces the notion of the inter-
nal Y for X 2 G. This notion depends on the parallelization chosen and simpli�es
the treatment since the in�nitesimal version (i.e., the di�erential of the action in
the representation space) dU of the induced representation takes the form

dU(X) = �X+ r(Y);

where X is the vector �eld corresponding to X, and r is the di�erential of the
inducing representation R. In [�rSe] the r(Y) is called the in�nitesimal multiplier.
The parallelization �xed, Y depends on X and on the point Z of the underlying
manifold. Table VI of [PS-I] gives the internals for Xm and Lsm, in case of left
parallelization, whenceY equals zero for the generatorsYm of the left translations
on U(2).

4.2. Comparison of Parallelizations

It is sometimes useful to use two or more parallelizations of the given space of an
induced representation. For example, the action of K appears simple in terms of
the curved (left) parallelization; but the action of the Poincar�e group is relatively
complicated in this parallelization, and simple in a 
at parallelization, which is
valid locally but not globally on M. The theorems of the corresponding section in
[PS-I] give the connection between the states (as vectors in representation space)
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when represented in terms of two di�erent parallelizations, global or local. The
reader is referred to [PS-I] for explicit statements obtained therein (see also x5.1).

In [Sv] the \oscillator parallelization" of the induced scalar bundle (! 5:1) is
considered.

5. Spaces of Scalar Representations

5.1. Scalar Representations of SU(2; 2)

Scala representations are representations which are induced by one-dimensional
representations of an isotropy subgroup. By x2.2 the isotropy subgroup of the
point p = (�;1) in eU(2) is isomorphic to

eP�=H�(R1 � SL(2; C )):

A one-dimensional representation of eGp has the form

R!(�((t; L);F)) = exp(!t)

for a unique complex number !, where � is the isomorphism of eP onto eGp intro-
duced in x2.2.

A representation induced from R! is said to have conformal weight !.

Remark 1. This notion plays an important part in the studies of conformal
bundles. A representation R of eP is said to be of (conformal) weight w, w being a
given complex number, in case R(S�) = �wI for � real and positive, S� denoting
the transformation x7!�x in Minkowski space.

Theorem 5.1 [PS-I]. In terms of the left parallelization the scalar representa-
tion of weight ! takes the form

U(g) :  7! �

with

�(Z) = jdet(C 0Z +D0)j
�!
 (g�1Z)

where g�1 from G equals

�
A0 B0

C 0 D0

�
: ut

In the remainder of this section the scalar representation is treated in terms of
the 
at parallelization. Left- and 
at-parallelized sections of an (abstract) section
	 are denoted as  and  0. I recall that G stands for SU(2; 2) and denote its left
action on U(2) by Z 7!gZ.
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Theorem 5.2 [PS-I]. Assume that Z is obtained from h 2 H via caley the
transformation (! 2:2), and


�1g�1
 =

�
A1 B1

C1 D1

�
:

Then the relation

 0(Z) = p! (Z)

holds with p = (u�1 + u4)=2. The scalar representation of weight ! acts

U(g)( 0)(Z) =

�
det

�
C1h

2
+D1

��
�!

 0(g
�1Z); ut

5.2. Covariance of Wave Operators

Theorem 5.3 [PS-I]. In the scalar representation of weight ! = 1 the equality

[dU(Lc + 1); dU(S)] = �2u�1u4dU(Lc + 1)

holds. If ! 6= 1, the left hand side is not the product of a function with dU!(Lc+1):
ut

Corollary 5.3.1 (5.3.2 of [PS-I]).

dU(Lf ) = p2dU(Lc + 1) (1)

for ! = 1: ut

This means, in particular, that the space S admits an interesting invariant sub-
space that may be correlated with solutions of the wave equation. On the one hand,
it consists precisely of all sections annihilated by the 
at wave operator dU(Lf ).
Note that this operator acts on all of M, and not merely on the submanifold M0,
on which it coincides with the usual D'Alembertian. On the other hand, it can
be described equivalently as the space of sections annihilated by dU(Lc + 1). The
relation (1) is referred to in [Se87] as an example of a bundle-invariant property.
It is also noted there that Lc + 1 does not quite correspond to the usual wave
operator in the Einstein universe but does give the temporal evolution that is the
main purpose of the wave operator to de�ne. This evolution is a special case of
the eG-transformational properties.

The situation is similar for the Dirac, Maxwell, and so-called higher spin equa-
tions, which (in their \massless" forms) correspond to irreducibly invariant, uni-
tarisable subspaces of the section spaces of bundles induced from other repre-
sentations of eP that are trivial on the translations, and are holomorphic on the
homogeneous Lorentz group cover, realized as SL(2; C ), and have a uniquely de-
termined conformal weight [Se87].
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For the w = 1 scalar bundle the following hermitian forms are of particular
importance:

hha; bii =

Z
((dU(Lc) + 1)a)�bd4u; (2)

ha; bi = �i

Z
_a�b+ i

Z
a_�b: (3)

In the expression above, _a stands for X0a, integration in (2) (respectively, in (3)) is

over ��M (respectively, over S3); the sections a; b are supposed to be left-parallelized.
In (3) each of the a, b satis�es an additional condition of annihilation by the wave
curved operator.

Theorem 5.4. hh�; �ii and h�; �i are invariant under the representation U of G.ut

One of the next important steps is intertwining the (global) forms (2) and (3)
with the usual (local) forms on Minkowski space, expressed in the 
at paralleliza-
tion, and determination of the curved and 
at energies in terms of Cauchy data
(the reader is referred to Theorem 5.6 of [PS-I]).

The proof that these hermitian forms actually become de�nite on distinctive
positive- and negative-energy invariant subspaces (! 5:3) is not reproduced here.
It is mentioned in [PS-I] that such a proof seems to require a special (K-�nite) basis
or the use of Fourier transforms and certain integral special function identities.

5.3. Factors of Composition Series

Among conformal scalar bundles those of weights w = 1 (! 5:2) and w = 2 (! 6:2)
are of greatest importance. The determination of factors and the order in which
they occur in the corresponding composition series are important in applications
(! 6:1).

It is possible to treat the situation in terms of the corresponding representa-
tions of the Lie algebra G on the K-�nite vectors ([PS-I, pp.135{138], where the
\restricted" section space E of the scalar conformal bundle of weight w = 1 is in-
troduced). This E equals the direct sum of all E�, the evolved �2[0; 2) issues from
the concrete basis considerations which we skip. It is convenient to set E�+2 = E�

for all real �.
The factors in case w = 1 are the following:

Theorem 5.5. dU is irreducible on each E� with �6=1. E1 has two minimal
invariant subspaces W+ and W�. The vector space W+ + W� is the kernel of
dU(Lc + 1) (or equivalently dU(Lf )) in E. The chronometric Hamiltonian H =
idU(X0) is positive (negative) on W+ (respectively, W�). The restriction of U to
(the closures of) W+ and W� are unitary, with the unitary structures h�; �i and
�h�; �i, respectively, (de�ned in x5:2). E1 is the sum (not direct) of the invariant
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subspaces V+, V , V�. Moreover, V \ V+ = W+, V \ V� = W�, and V+ \ V� =
0. The factor spaces V+=W+, V�=W�, and V=(W+ +W�) are irreducible and
unitarizable, with the unitary structures �hh�; �ii, �hh�; �ii; and hh�; �ii, respectively.
The spaces V+, V�, and V have no G-invariant complements for W+ W�, and
W+ +W�, respectively. ut

For w = 2 the space E2 is the only subspace of E which is not irreducible.
E2 equals the direct sum of the spaces V+, V , and V� which are irreducible and
invariant. The chronometric Hamiltonian H is positive (respectively: negative) on
V+ (respectively: on V�). For the proofs see [PS-I], [Mo90], and references therein.
There the subspaces involved are determined explicetely in terms of the K-�nite
basis. The latter is labelled by quantum numbers (! 6:4) associated with a system
of subgroupsO(2) � O(3) � O(4) ofK, together with the O(2) subgroup generated
byX0. This basis is used also in the treatment of higher spin representations, and is
important in physical applications. The determination of factors of scalar bundles
can be used later for representations of spannor (! 6:2) and plyor (! 6:3) bundles
as has been already done in case of two-dimensional chronometry [�rSe].

6. Elementary Particles Associations

6.1. The General Viewpoint

I.E.Segal introduces in [Se91] the notion of a clan (consisting of all �elds on M

having designated transformation properties under eG) and considers the fermionic
(! 6:2) and bosonic (! 6:3) ones. He describes the part of his program as an
extension of Wigner's classical formulation of relativistic particles as irreducible
unitary positive-energy representations of the Poincare group eP0 to one in which
the causal group eG ofM is substituted for the eP0. I.E.Segal emphasizes the fact
that the bundle or, equivalently, the transformation group aspect, is no less essen-
tial than the pure group representation aspect, and physically more fundamental.
From hereon the use of some terminology from elementary particle physics seems
inevitable: see my Remark 3 in x6.4. The spatiotemporal labelling of vectors in the
induced representation spaces is necessary for the concept of local interaction

to be meaningful, and e�ectively necessary for the treatment of the closely
related issue of causality. An example is the di�erence between the natural models
for the electron �e and muon �� neutrinos that emerge [P-IV, PS87, Se91].

We discuss these notions more explicitly. The starting point is an induced
representation U of eG (! 4:1) with V as the representation space. Only represen-
tations with a composition series are considered [Se91], i.e., with a maximal chain
of invariant subspaces

0 � S0 � S1 � ::: � Sn = V: (1)
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A subquotient of U is de�ned as the corresponding representation on the quotient
space S=T between invariant subspaces T � S � V. The factors are those sub-
quotients that are irreducible, i.e., for which T is a maximal invariant subspace of
S. I.E.Segal distinguishes between an exact particle, which is represented by a
vector in the clan and corresponds to a free physical state and a reduced particle,
a theoretical entity which is extracted from a clan by formation of subquotients.
The factors de�ne the elementary particle spectrum; the stable spectrum consists
of those factors that are unitary and have a one-sided frequency spectrum (i.e., the
one-sided spectrum of the chronometric Hamiltonian H (! 3:8)). The (chrono-
metric) energy of a particle in the (normed) state f is de�ned as hHf; fi where
h�; �i is the positive-de�nite Hermitian form in the corresponding factor. Although
there will in general be many inequivalent (non-conjugate) chains (1), the factors
are unique as group representations. Notwithstanding the lack of uniqueness for
the maximal chain, there are nontrivial constraints on the order in which the fac-
tors occur, corresponding to the order of inclusion of the corresponding invariant
subspaces. I.E.Segal remarks [Se91] that this contrasts greatly with the entirely
arbitrary order in which the factors occur in the case of a fully decomposable
representation, as in conventional theory. Thus, in the chronometric fermion clan
(! 6:2), the exon x appears as a bottom invariant subspace, or factor, and the
electron e as a top factor; in the middle are the muon and the electron neutrino
factors, in that order. In the boson clan (! 6:3), the photon appears as a bottom
factor, above which are the bare versions of W and Z.

Corresponding to any given chronometric clan is a relativistic free particle fam-
ily consisting of the direct sum of the stable factors, restricted to the conventional
Poincare group P0 and �xed in mass (! 6:2). Because of indecomposability, the
action of P0 on the clan mixes up the factors, and so is quite di�erent from the
relativistic action of P0 on the direct sum of the stable factors. In other words,
the chronometric free temporal evolution gives rise to apparent particle produc-
tion within the frame of the relativistic limit. It is called [Se91] indecomposable
production, to distinguish it from Lagrangian production of the conventional type;
both are causal and covariant. Since indecomposable production is absent in the
relativistic limit of the chronometric theory, it appears as a weak interaction in
conventional terms. But there are also Lagrangian interactions between neutrinos
and other particles (! 6:4), which would be classi�ed as weak in the relativistic
theory.

6.2. The Fermion Clan

The corresponding representation is induced (! 4:1) to eG (! 2:2) from the

spannor representation � of eP (! 2:1). The representation � is de�ned as the
direct sum of �+ and of ��, where

�+(g) = (det T )2
�
T (i=2)FT ��1

0 T ��1

�
;
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and �� may then be de�ned, within equivalence, as either the parity transform
P ([P-IV]) of �+ or the complex conjugate representation. The matrix T above

stands for et=2L where (t; L; F ) 2 eP, see x2:1.
Remark 1. I drop the index d = 2 from the appropriate notation of [P-IV], d
being the degree of the spannor.

Each of the two inducing representations is de�ned in C 4 . In C 8 = C 4
L

C 4

the discrete symmetries C;P; T act as well [P-IV, Theorem 16.3.1]. The eight-

dimensional spin representation � of eG is introduced in [P-IV]. It �gures in the
following useful statement (where the spannor bundle stands for the corresponding
induced bundle (! 4:1)).

Theorem 6.1 (Corollary 16.4.4 of [P-IV]). The spannor bundle is (bundle-
wise) the tensor product of the scalar bundle (! 5:1) of weight w = 2 with the

spin representation of eG. ut

The rigorous mathematical derivation of the corresponding elementary particles
seems to be still absent in the literature. A fundumental attempt has been made in
[P-IV] but later it was noted [Se91] that \the composition series shown in [P-IV] is
inexact and should be replaced by that indicated in [Se91]". The latter presents the
fermion clan as the direct sum of a stable subspace and a tachionic subspace (i.e.,
one with the both-sided unbounded frequency spectrum). The stable subspace
is the direct sum of a positive-frequency (! 6:1:) representation F+ (which is
\indecomposably built" into the representation induced from �+) with its complex
conjugate F�. Physical assignments for the reduced (! 6:1) particles are given in
Table 1 of [Se91]; those for antiparticles are obtained by interchanging the left and
right spins [PS-II].

There are exactly four factors (hence, the fermionic clan includes four particles
and four antiparticles ), they correspond to the exon x, muon �� and electron
�e neutrinos, and electron e [Se�r]. This physical particle assignment is depicted
in Column I of the mentioned table. The assignment is determined by the mas-
sive/massless character of the particle and the vanishing/nonvanishing of its inter-
action with the photon (! 6:4). The massive (respectively: massless) means in the
context that the Gelfand-Kirillov dimension equals four (respectively: three), see
Column VII of the table. The second column is the bare (chronometric, intrinsic)
mass of the particle expressed in chronometric units. It is de�ned as the minimum
of the chronometric energy (! 6:1) in the corresponding factor and equals 3/2
for the neutrinos, 5/2 for exon and electron; this is the contents of Column II.
It is remarked in [Se91] that the minimum of the Minkowski energy vanishes and
that this bare mass is far below the level of physical observability, since the proton
(! 6:4) relativistic mass mp � 1040. This latter notion is introduced as follows.
The starting point is an exact particle represented by an eigenstate of the chrono-
metric Hamiltonian H (! 3:8). LetM2 denote the usual relativistic mass operator
T 2
0 �T

2
1 �T

2
2 �T

2
3 . This operator and H act on the representation space; then the
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state in question has to be an approximate eigenstate for

e�itHM2eitH

of the same narrow-width eigenvalue, for a nongenerically long time interval. Thus
in particular, [M2; H ] should have expectation value 0. The states with such con-
straints appear likely to exist and their relativistic masses be computable from
them. One of the next quantum numbers is the height of the particle which seems
to correspond to the order of inclusion of the corresponding invariant subspace.
The four just mentioned particles have heights from 1 to 4, in the same order.

Remark 2. The spannor section space of the two-dimensional chronometry has
been treated in [�rSe]. It has much in common with the physical four-dimensional
situation. The investigation of the composition series exploits e�ectively the analog
of the above stated Theorem 6.1.

6.3. The Boson Clan

It is induced (! 4:1) from the particular 15-dimensional indecomposable represen-

tation (see [P-IV]) of the Poincare group eP. The corresponding �eld (i.e., section
of the induced bundle or vector in the space of induced representation) is referred
to as plyor (see [P-IV] and several later publications).

Let me reproduce the corresponding information from [P-IV]. To characterise
the plyor representation in�nitesimally (see Lemma 17.1.1. of [P-IV]) it is con-
venient to use 8 � 8 matrices wm;m = �1; 0; : : : ; 4; therein introduced. The two
subspaces P+; P� of conformal weight 1 (! 5:1) include photons as reduced vector
particles. P+ is de�ned by the basis (w�1 �w4)ws, and P� is similarly de�ned by
(w�1 � w4)wswjwk; all indices have values from 0 to 3. The bases are chosen in
the spin space (! 4:1).

The corresponding subspaces of the conformal weights 0 and �1 are similarly
de�ned by their bases in the spin space [P-IV].

In the statement below � stands for the in�nitesimal plyor representation and
the generators Tm (of time and space translations in the Minkowski world M0)
have been distinguished earlier (! 3:8).

Theorem 6.2. The total space of plyors is indecomposable under the action
of eP. On restriction to the scale-extended Lorentz group (! 2:1), it decomposes
as direct sum (of w = 1; 0;�1 subspaces) shown in Table 17.1.1 of [P-IV]. Its
subspace of weight �1 leaks nontrivially into that of weight 0, and that of weight 0
into that of weight 1, while the latter subspace is eP-invariant. (The exact meaning
of leaking is that, f.e., the w = 0 subspace is taken by the operators �(Tm) into
the w = 1 one; etc.) ut
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6.4. The Chronometric Fermion-Boson Interaction

The exposition of this section is mainly extracted from [Se91]. I add references to
make the reading easier.

Remark 3. There are several standard notations and terminology from elemen-
tary particle physics somewhere above and in the remainder of this section. The
reader is to consult one of the numerous books on the subject (see, f.e., [Derd] and
references therein).

The interaction Lagrangian LI is the essentially unique eG-invariant coupling of
the boson clan with the local bilinear fermion clan current (bilinear current here
stands for the section of the tensor product of the bundle with its dual [PS-II]).

Charged particles are either electrons (! 6:2) or composites with electrons. (A
proton p, f.e., is chronometrically modelled as p = x+ e+ + �e).

If f denotes the fermion and A, the boson state, where A is represented canon-
ically by a matrix on the fermion spin space [P-IV], then

LI(f;A) =

Z
hhAf; fii d4x

where the inner product is the invariant [P-IV] one in the fermion spin space at
x, and for the measure d4x see x3:7. The bosons have weights dual to those of the
fermion currents: since these are of weights 3=2+3=2; 3=2+5=2; 5=2+5=2 (Table 1
of [Se91]), the boson weights are 1; 0, and �1 (the sum of the three weights must
equal 4, [PS-II]). The weigts 0 and �1 are well de�ned only in the the relativistic

limit; w = �1 states leak (! 6:3) under the action of eG into w = 0 states,

and w = 0 states leak similarly into the w = 1 subspace, which is eG-invariant.
Corresponding to the three di�erent types of currents just indicated, there are
three di�erent types of interactions, in terms of relativistic limit.

(i) Two w = 3=2 fermions and a w = 1 boson:
The two w = 3=2 fermions are electrons and neutrinos. The w = 1 bosons

include the photon, at the bottom of the subspace, and distinct candidates for the
bareW =W0 and the Z, the former in a neutral form (the physicalW+,W� being
composites of W0 with electrons and other particles). All three reduced particles
have distinct quantum numbers that play a role comparable to the gauge degrees
of freedom in the standard model. Charges of the w = 3=2 particles are included
automatically in the form of the Lagrangian; e.g., the neutrino-photon integrated
interaction vanishes, as a consequence of the transformation laws (or equivalently,
the Dirac and Maxwell equations). The neutrino interactions with the W0 and the
Z are nonvanishing and parallel those of e with the latter, providing a form of
weak isospin.

(ii) A w = 3=2 fermion, a w = 5=2 fermion, and w = 0 boson:
This is not readily characterized in relativistic terms but seems to underlie

low-energy-electron and top-neutrino (\top" - in terms of the chain (1), see x6.2)
interactions with baryons and light mesons. The large nucleon to physical elec-
tron mass ratio appears to give this interaction a strong appearance in relativistic
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terms, although in bare chronometric terms it appears formally as approximately
symmetric between the e and the x. The w = 0 sector includes a natural candidate
for the neutral pion, whose decay into two photons may derive primarily from the
leaking of the w = 0 bosons into the w = 1 subspace. The decay into neutral pions
of the K0 may be of similar character.

(iii) Two w = 5=2 fermions and a w = �1 boson:
This interaction appears as purely strong in relativistic terms. The stable re-

duced elementary boson in this sector shows mixing of two relativistically invariant
components and would be expected to leak into w = 0 bosons, among other possi-
ble decays. This suggests identi�cation with the K0, but the mixing shown by the
B0 and the D0, together with their decay products, suggests they may be higher
forms of the K0 via the above proposed mechanism. The top positions of the e and
the K0 in their respective clans should facilitate this mechanism. The conformal
weight sum constraint suppresses decay of the K0 into �+�� but allows K0 ! x�x.

There are several other claims in [Se91] as regards chronometric description of
elementary particles characteristics and interactions. I.E.Segal argues, in partic-
ular, that all relativistically \internal" symmetries may originate in the interplay
between the quantum numbers associated with the maximal subgroups K and P
of eG in the chronometric clans and thus be of an ultimately geometrical character.

7. Chronometry and Extragalactic Astronomy

It is outlined in [Se 91] (and is seen in the examples of several previous sec-
tions) that the chronometric treatment of microscopic phenomena (elementary
particles, interactions, quantization) is not superradical in comparison with the
standard model. The situation in extragalactic astronomy is quite di�erent since
in its main predictions it contrasts greatly with the now-a-days most accepted
Friedman-Lemaitre cosmology.

I.E.Segal collaborates in the subject with J.F.Nicoll. During the past de-
cades more than twenty papers appeared in astronomical and physics journals
in which the predictions of the chronometric theory and systematic astronomical
observation were compared in detail [Se91, SeNi, and references therein].

One particular di�erence betweeen the two cosmological theories is the chrono-
metric redshift-distance relation

z = tan2(r=2); (1)

where r is the distance in radians on the sphere S3 that represents space (! 1).
The equation (1) has been obtained in [Se76] at the classical quantum mechan-

ical level under particular assumptions on the photon wave function. In [SZ] this
law is rederived on a mathematically more rigorous basis for a photon of localized
spatial support. The unitary representation of the conformal group on the Hilbert
space of normalizable photon wave functions is applied, in the Schr�odinger and
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Heisenberg representations. The analysis shows also the existence of photon states
of cosmic spatial support that are not redshifted at all, as time evolves.

Recall the crucial idea in deriving the law (1): According to chronometry, the
\true" Hamiltonian is the operator H (! 3:8) corresponding to the advance of
chronometric time t (! 2:2), while direct laboratory observations of the energy
yield only the scale-covariant component H0 (! 3:8) of H . This component does
not commute with H and so is not conserved; after an elapsed chronometric time
s, it is represented, in the Heisenberg picture, by the operator

H0(s) = e�isHH0e
isH :

The redshift z is de�ned so that 1+z is the factor by which the special relativistic
energy is reduced in the state in question. Chronometry explains, intrinsically, why
the redshift is \red", though it may appear to lack the intuitive simplicity of a
Doppler explanation for the redshift, which has become so familiar as to appear
almost axiomatic to some astrophysicists.

The distance r in (1) is not an observable quantity, but the purely geomet-
ric relations between apparent luminosity and distance (as well as other observed
quantities, such as angular diameter) permit the distance to be eliminated and
purely observable relations derived. These relations are then tested on the large
samples of galaxies, quasars, and radio sources. Remarkably good agreement be-
tween predictions and observation is found. Chronometry leads to a much better
�t with observation than do Friedman-Lemaitre models with their two free param-
eters q0 and �. In addition, a number of anomalies within the Friedman-model of
cosmology are simply eliminated: the apparent superrelativistic lateral velocities
of a number of sources, and extraordinary luminosity and apparent evolution of
quasars. The cosmic background radiation is not necessarily indicating the \big
bang" but is predicted as the temporally homogeneous equilibrium photon gas es-
tablished by the di�usion and scattering of electromagnetic radiation around the
physical space S3 in accordance with energy conservation.

In [Se91] it is also argued that the mechanism of indecomposable production
(! 6:1; 6:3)

�e ! �e + �� + ~��

may contribute to the solar neutrino de�ciency caused by the attrition of the num-
ber of �e particles in 
ight due to the conversion into �� pairs that are unable to
revert to �e. On the other hand, the inverse process can proceed on a compara-
ble scale only by Lagrangian rather than indecomposable production. As regards
gravitation, chronometry says that there is no special force of gravity as such: it is
simply the totality of the scale-contravariant [Se86], or super-relativistic, compo-
nents of the energies associated with forces that also act microscopically (! 6:4).

It is stated in [Se91] (see references therein) that cosmic ray observations have
been indicative of a neutral extremely long-lived hadron-like particle coming from
Cygnus X-3 and from Hercules X-1. The chronometric exon x (! 6:2) is a theoreti-
cal counterpart for these particles. Its relativistic mass (! 6:2) varies, in principle.
If it is of the order of the neutron mass, confusion between x and n could be a
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factor in the many revisions in the estimated neutron lifetime in recent decades
and an anomaly in neutron scattering [Sla] but observations on Hercules X-1 sug-
gest that it may be light enough to be confused with a neutrino, if produced in
high-energy collisions. Further cosmic ray observations are needed, but conclusive
identi�cation of the cygnet with the exon will depend on an observation of the
latter in accelerator experiments. It should be possible to produce it in energetic
electron-nucleon or nucleon-nucleon collisions.
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