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Gravity as field in the Planck limit.
Piotr Ogonowski1 and Piotr Skindzier2∗

We show that Geroch decomposition leads us to define
Maxwell-like representation of gravity in (3+1) metrics
decomposition. From such decomposition we obtain
scalar field that may be assigned with gravitational in-
teraction. We use this field to propose new approach
to quantization of gravity that results in proper quanta
values.

1 Introduction

There are known scalar theories of gravity on flat space-
time [1] explaining gravity as interaction between bodies.
In last 50 years many of them start to be considered as
alternative to classical general relativity. In all of this ap-
proaches authors try to extend gravity to the Planck limit.
For this efforts the main problem in our opinion is ef-
fective quantization of this theories. In our approach we
propose first to extend classical general relativity to Planck
limit on (3+1) manifold and next quantize it in classical
and covariant way.

In first part we show, that Geroch decomposition for
spherically symmetric case, opens new way to understand
the curved spacetime as the effect of local interaction of
flat spacetime. In this perspective gravity is described by
effective scalar fieldΦ= 1/γr , which can be interpreted -
in naive approach - as gravitational time dilatation acting
on flat spacetime.

In second part of this article we show, thatΦmay also
serve us to describe classical electromagnetic field. We
show that in infinity limit we are able to reconstruct elec-
tromagnetic equations in classic and covariant form.

In third part of the article we show how we may quan-
tize the fieldΦ to obtain proper rest mass, photon energy
and Coulomb-like potential for elementary charges.

We hope that this approach may bring important im-
plications for our understanding of spacetime in zero limit
and may shed new light on quantum gravity theories and

opens new areas for research and generalizations.

2 Local surrounding in Minkowski
spacetime as scalar field.

2.1 Killing vector fields

At the beginning we define, Einstein summation conven-
tion. Commas denote partial derivatives:

ϕ,µ = ∂ϕ

∂xµ
(1)

Semicolons denote covariance derivative:

∇µXα = Xα
;µ = Xα

,µ+ΓαµνX ν (2)

where Γ ’s are the connection coefficients. We choose met-
ric signature (−,+,+,+). The geodesic equation:

0 = d xµ

dτ

[(
d xα

dτ

)
,µ
+Γαµν

d xν

dτ

]
(3)

states that the covariance derivative of the particle four-
velocity:

uµ = d xµ

dτ
(4)

along itself vanishes:

0 =∇µuα = uµuα
;µ =

d xα

dτ2 +Γαµν
d xµ

dτ

d xν

dτ
(5)

Here τ is affine parameter, which is proper time for time-
like geodesics. On a spacetime, a Killing vector field [2]
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generates an isometry of spacetime. Generally, this re-
quires solving the equation

ξµ;ν+ξν;µ = 0 (6)

but in the case where we have a coordinate chart in which
the metric coefficients are independent of a coordinate,
then the vector field of that coordinate is automatically a
Killing field.

For a geodesic, it defines a constant of motion, since

∇µ
(
uµ ·ξ)= uν

(
uµξµ

)
;ν = 0 (7)

uνuµ
;νξµ+uνuµξµ;ν = 0 (8)

the first term being zero because of the geodesic equation
and the second term because of anti-symmetry of ξµ;ν

To introduce Killing fields we need to choose metric for
which we can find at lest one vector ξµ. For the simplicity
let us introduce Schwarzschild spacetime:

d s2 =−
(
1− rs

r

)
d t 2 + dr 2(

1− rs
r

) + r 2 (
dθ2 + sin2θdϕ2) (9)

We see that the metric coefficient
(
1− rs

r

)
is time t and ϕ

independent, so that ∂t and ∂ϕ are Killing fields.

In Schwarzschild coordinates, a particle worldline has
the four-velocity

uµ =
[

d t

dτ
;

dr

dτ
;

dθ

dτ
;

dϕ

dτ

]
(10)

so for t :

ξµ = [1;0;0;0] (11)

we have the dot product

−e0 = gµνξ
µuν =−

(
1− rs

r

) d t

dτ
(12)

and similarly for ϕ:

ξµ = [0;0;0;1] (13)

we have

l = eϕ = gµνξ
µuν = r 2 (

sin2θ
) dϕ

dτ
(14)

The physical meaning is that e0 and l are conserved
specific (per-mass) energy and azimuthal angular mo-
mentum of the particle at infinity, respectively.

We should also note, that this is relativistic energy, so
for free-fall from rest at infinity (with escape velocity) we
have e0 = 1

2.2 Geroch decomposition

Let us apply Geroch decomposition [3] for chosen Schwarzschild
spacetime in spherically symmetric case and discuss its
implications. To provide ease of interpretation we do not
use ADM formalism [4] for this specific case, however it
might be useful for future generalizations.

Schwarzschild metric is an asymptotically flat space-
time with a timelike Killing vector field µ= [1;0;0;0] with
norm-squared

λ=−ξµξµ (15)

and twist

ωµ = εµνρδξν∇ρξδ (16)

using the tensor

γµν =λgµν+ξµξν (17)

the spacetime metric takes the form:

d s2 =−λ
(
d t −ωi d xi

)2 + γi j

λ
d xi d x j (18)

3 Maxwell-like representation of gravity
in (3+1) metrics decomposition

3.1 Geroch decomposition representation

Let us rewrite metric (18) to easier form:

d s2 =−λd t 2 +2λωi d td xi − (λωiω j +
γi j

λ
)d xi d x j (19)

This is the metric in form of:

d s2 = g00d t 2 +2g0i d td xi + gαβd xi d x j (20)

For convention let us introduce:

h ≡ g00 =−λ (21)

gα ≡ −g0α

g00
=−2λωi (22)

Υαβ ≡ −gαβ+hgαgβ =−(
γi j

λ
+λωiω j ) (23)

For this definitions we can introduce Maxwell-like equa-
tions in (3+1) form:

F[i k;l ] = 0 (24)

In more classical way:

O·B = 0 (25)
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O×E =− 1

Υ

∂

∂t

(p
ΥB

)
(26)

For better understanding let us write:

1p−g
∂a

(p−g F ab
)
= 0 (27)

then Maxwell-like equations can be rewritten as:

O ·D = 0 (28)

O×H =− 1

Υ

∂

∂t

(p
ΥD

)
(29)

where:

D = Ep
h
+H×g (30)

B = Hp
h
+g×E (31)

Schwarzschild metric is static and components of it are
time independent so we can rewrite Maxwell-like equa-
tions as:

O ·B = 0 (32)

O×E =−∂B

∂t
(33)

O ·
(

Ep
h

)
= 0 (34)

O×
p

hB = 1p
h

∂E

∂t
(35)

(36)

Above equations acts like Maxwell equations, where the
speed of wave propagation is

Vw =
p

h = c

√
1− rs

r
(37)

It is simple in this moment to show that

lim
r→∞Vw = c (38)

3.2 Propagating disturbances of spacetime isometry

Killing vector Xb by definition satisfies:

g bc Xc;ab −Rab X b = 0 [5, p. 443; C.3.9] (39)

Xa;bc = Rabcd X d [5, p. 443; C.3.6] (40)

X a;b
;b +Ra

c X c = 0 (41)

Thus for introduced Killing field we have:

Rα
βγσξ

σ = ξσ;β;γ (42)

Therefore:

ξ
;β
α;β =−Rαβξ

β (43)

so the timelike Killing field is intimately connected to
spacetime curvature. Defining a convenient F and using
the defining property of Killing fields

ξα;β+ξβ;α = 0 (44)

we obtain

Fαβ = ξ[β;α] =
1

2

(
ξβ;α−ξα;β

)=−ξα;β (45)

therefore

F ;β
αβ

= Rαβξ
β (46)

This looks like the standard electromagnetic field tensor

F ;β
αβ

= Aβ;α− Aα;β (47)

which couples to four-current J through Maxwell’s equa-
tion

Fαβ

;β = 4πJα (48)

In vacuum, the Ricci tensor vanishes, and the Killing
field ξ seems to act like the electromagnetic four-potential
A, that acts for electromagnetism in source-free regions,
in the Lorentz gauge

Aα
;α = 0 (49)

which automatically satisfies all Maxwell’s equations.
Physical meaning of the tensor F should be explained
as propagating spacetime anisometry.

3.3 Maxwell-like wave equations

3.3.1 Gravity as wave equation in Minkowski spacetime

Let us follow [6] and consider regular, flat Minkowski
spacetime. We define scalar potentials:

Φ= 1

γr
=

√
1− rs

r
(50)
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Θ= r ·βr = r

√
rs

r
(51)

We define following vector fields (where ê are directional
versors):

T = cΦ · êy (52)

A =−∇cΦ× êy =−∇×T (53)

U =∇cΘ× êx (54)

Ω=∇×U = dêy

d t
(55)

Using relations between above fields we obtain:

γr

c
· dT

d t
= γr

c

c

γr
· dêy

d t
=Ω (56)

∇×A = γr

c
· dΩ

d t
(57)

After simple transformations we derive d’Alambertian:

1

c2 · ∂
2A

∂τ2 −∇2A = 0 (58)

or with the same meaning:

γ2
r

c2 · ∂
2A

∂t 2 −∇2A = 0 (59)

We have obtained wave with the same property as
in (37) With respect to some factor above d’Alambertian
should be able to work as electromagnetic wave descrip-
tion.

Let us notice, that in our description time flow (t)
axis is orthogonal to spatial axis but acts as rotating field.
Therefore we may still consider both as Minkowski space-
time with orthogonal space and time.

3.3.2 Interpretation of Maxwell-like picture of metric

We have constructed a timelike Killing field what means
that we have a stationary spacetime.

For now, let us assume that the Killing field is irrota-
tional:

ωi = 0 (60)

Then spacetime is static, and the Killing observers
(four-velocities parallel to the timelike Killing field) are
also static, since:

d xµ = 0 (61)

If we normalize the four-velocity properly:

uµ =λ−1/2ξµ (62)

Thus

λ−1/2
Schw ar zschi l d = 1√

1− rs
r

= γr (63)

We see that this quantity is the inverse-norm of our
timelike Killing field. Without the inversion, the quantity
λ1/2 is the gravitational redshift.

The four-acceleration of the Killing observers given by
a covariant derivative in our static case simplifies to just:

aµ =U ;µ = gµν
(
logλ1/2)

,ν (64)

In the Schwarzschild case, everything but the r-component
vanishes, and we can put it in corresponding orthonormal
basis rather the coordinate vector:

∂r êr = ∂r

(√
1− rs

r
∂r

)
(65)

wich yealds to:

ar =
(
1− rs

r

) 1

2

rs

r 2

1

1− rs
r

= rs

2r 2 (66)

Thus

a = rs

2r 2

1√
1− rs

r

êr = gr êr (67)

showing the correct gravitational acceleration: the proper
acceleration of the Killing observers is gr into the out-
wardly radial direction.

Of course this is only conceptual interpretation of our
(3+1) decomposition of Schwarzschild metric. In this mo-
ment we have to stress that depending on coordinate
system we can get different interpretation of gravity in
pseudo classical picture.
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3.4 Action of the scalar field

Let us test out approach. Taking t=0 hypersurface, the sym-
metry of the spacetime under time inversion means that
the extrinsic curvature is zero, in which case the Gauss-
Codazzi equations simplify to:

Ra
bcd =h Ra

bcd (68)

R0
bcd = 0 (69)

R0
i 0 j =−hU;i ; j −

(
hU;i

)(
hU; j

)
(70)

where the superscript h denotes that the quantity belongs
to spatial hyperslice and should be calculated using the
spatial metric h alone.

Contracting all the way down to the Ricci scalar:

R =h R −2
[

hU ;i
;i +

(
hU ;i

)(
hU;i

)]
(71)

The first term in the bracket is a Laplacian

2U = logλ (72)

and the metric determinant is

g =−λh =−γ (73)

so in terms of the metric:

γi j

(
1

λ

)
hi j (74)

the representation of the Einstein-Hilbert action is

S α
∫

R
p−g (75)

S =
∫ (

γR −γ∇2 (
logλ

)− 1

2

γi j dλi dλ j

λ2

)
p
γ (76)

We have obtained the proper result.

We have just shown that in the Geroch decomposi-
tion of Schwarzschild metric we can consider gravity as
medium that change the speed of light in Maxwell-like
picture of gravity, but, of course, in local coordinate sys-
tem speed of light is still constant and equal to c.

This consideration leads us to the conclusion that
after Geroch decomposition we can reconsider gravity
not only as a spacetime curvature but also as some field
Φ =p

h = 1/γr . Of course, this picture of gravity we can
only get in (3+1) Geroch decomposition. But it means,
that in Geroch picture we get that gravity is Maxwell-like
field and equation of motion of this field is dependent on
what coordinate system we choose.

We have to be aware of this property of the gravity. If
we try to interpret it as some field in 4 or (3+1) dimensions
we first have to decide what is the metric and in what co-
ordinate system we consider this metric. In naive picture
we can say that:

- metric choose is equivalent to choose of field (con-
servation laws),

- choose of coordinate system is equivalent to choose
of equation of motion (dynamic equations).

4 Quantum picture of the scalar field Φ

As it was shown, the interpretation of our problem will
depend not only on metric we choose but also on coordi-
nate system. This remark is our first condition if we would
like to quantize classical field that we present in section 3.

The choose of action of the field presented in section
3.4 is not sufficient. To do quantization of gravity we have
to introduce Hamiltonian in specific coordinate system
for which it will be obvious how in classical way we can
do the process of quantization.

Up to now it is not obvious how to choose Hamiltonian
in a way that will give us equation of motion for operators
and wave functions that we could easy interpret using the
Copenhagen interpretation of wave function.

In first approach we just use action to define Hamilto-
nian in form where we have separated time and space in
linear form and then quantize it.

In second approach we write Hamiltonian in covariant
way and choose condition for metric that will give us con-
fidence that our equation of motion will be well defined.

Now, we try to show how those two different ap-
proaches works and what result they give.
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4.1 Classical quantization - first approach

From equation (76) we may deduce that gravitational ac-
tion of a static spacetime is equivalent to the action of
a 3-dimensional spacelike manifold minimally coupled
to a scalar field Φ = 1/γr . Let us define Lagrangian and
Hamiltonian for that situation.

As we know by definition:

H =∑
i

ẋi
∂L

∂ẋi
−L =∑

i
ẋi pi −L (77)

For some test body with rest mass "m" moving in flat
3 dimentional space we would have:

3∑
i=1

ẋi
∂L

∂ẋi
= v ·mvγ= mc2β2γ (78)

where

β= v

c
(79)

Let us define zero-dimension (time dimension) to obtain:

ẋ0p0 =−vr ·mvrγr =−mc2β2
rγr (80)

Now, utilizing definition (77) by simple calculations we
may define proper Lagrangian an Hamiltonian for (µ =
0,1,2,3) in form of:

L = mc2 1

γr
−mc2 1

γ
(81)

we obtain Hamiltonian in form of:

H =∑
µ

ẋµ
∂L

∂ẋµ
−L (82)

after conversion:

H = mc2γ−mc2γr (83)

To comply with the Newton approximation we will note it
in form of:

H = mc2(γ−1)−V (r ) (84)

where

V (r ) = mc2(γr −1) (85)

We may now follow Schrodinger’s way, approximat-
ing kinetic energy and expressing it with momentum in
classical form:

H = p2

2m
−V (r ) (86)

We may also try to reproduce relativistic Dirac equa-
tion, however for our analysis Schrodinger approximation
appears to be sufficient. In this moment we have well
defined, approximated Hamiltonian that we can easily
quantize using relation:

iħ ∂

∂t
Ψ= ĤΨ (87)

Which gives:

iħ ∂

∂t
Ψ(r, t ) =

[ ħ2

2m
∇2 −V (r )

]
Ψ(r, t ) (88)

where we use by definition:

p =−iħ∇ (89)

As we can see this is Schwarzschild like quantum equa-
tion. In this classical form of equation we can interpret
wave functionΨ in classical way and look on square of it
as on probability of finding particle.

It is important to show here that using Maclaurin’s
expansion in the limit we get:

lim
r→∞V (r ) = mc2

(
0− rs

2r
− 3rs

2

8r 2 +O

((
1

r

)3))
(90)

In this limit of potential we may easy recognize, that in
zero approximation we get free moving particle with mass
m. In first approximation we get particle that interacts
with scalar field of 1/r type.

We see that in the above quantum approach we get
that gravity in first approximation acts on particle as scalar
field and can create nonzero stable configuration base
state.

Mass of the particle can go to zero or to the limit of
Planck mass. In this case we get vacuum solution of our
quantum equation with virtual particle which effective
mass will be higher than zero but in general different then
Planck mass.

Therefore it is worth to show, that calculating limits
of V (r ) for Planck scales we obtain (after approximation
with Maclaurin’s expansion) valid classical approxima-
tion of rest mass, Newton’s gravitational potential, photon
energy and electrostatic Coulomb-like potential of two
elementary charges.

4.1.1 Rest mass approximation and Newton’s limit of
potential

For rs << lP we calculate:
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lim
m→mP ;r→lP

V (r ) = (91)

= mP c2

 1√
1− rs

lP

−1

≈ mP · c2rs

2lP
= c4rs

2G
= Mc2 (92)

We have obtained value that may be treated as some
rest energy (some rest mass M) related to given Schwarzschild
radius.

We obtain Newton’s limit of gravitational potential by
approximation:

V (r ) = mc2(γr −1) ≈ m
c2rs

2r
=G

mM

r
(93)

4.1.2 Photon energy approximation

For r >> lP we calculate:

lim
m→mP ;rs→lP

V (r ) = (94)

= mP c2

 1√
1− lP

r

−1

≈ mP c2 lP

2r
= 1

2
ħω (95)

where from rotation described in section (3.3.1) we
may derive:

ω= c

r
= 2π

T
(96)

As we see, considering twisted pair of above particles
with "c" speed we obtain valid approximation for photon
energy. We should notice, that above hypothetical pho-
ton energy formula may be tested for pulsations close to
Planck pulsation ωP = 1/tP treating Planck pulsation ωP

as the limit.

While we are considering in quantum mechanics a
photon described by the commonly used energy formula
ħω we obtain known problems at Planck length scales
that have vital meaning for quantum cosmology and for
attempts to grand unification. [7]

Just introduced formula based on (95) does not crash
at Planck time scales, because ħω acts only as approxima-
tion for small energies.

4.1.3 Coulomb-like elementary charge interaction

We may describe elementary charge interaction as the
result of formula:

lim
m→mP ;rs→lP /2π

V (r ) · (γr −1) = (97)

= mP c2

 1√
1− lP

2π lP

−1

 ·

 1√
1− lP

2πr

−1

≈ (98)

≈ EP ·4πα · lP

4πr
≈ ħc

r
·α (99)

where α is fine structure constant. This way we have
obtained electrostatic potential for elementary charges
expressed with natural units.

In this point we have to point out that limit considered
here is in fact interaction between fields V (r ) V (r )

mc2 , which
can be interpreted as first approximation of interaction
between two particles. This shows that in fact we may get
in natural way fine structure constant approximation if we
introduce interaction between two particles and consider
it in first order approximation.

4.2 Covariant quantization - second approach

As it was shown in section 4.1 we can find quantum equa-
tions for gravity if we choose metric in proper way. In
next step we construct Hamiltonian and quantize it in
classical way. Still we can not always be sure that form of
our metric give us Hamiltonian from which we could get
quantum equations that will be easily interpreted by use
of the Copenhagen [8] interpretation of wave function.
This remark leads us to second approach to quantization.

In this approach we have to notice that natural in-
terpretation of wave function is easy for Cartesian and
Minkowski metrics. For both of this spaces we have well
defined time and space variable which are separated and
do not have singularities which are artefacts of coordinate
system. For that metrics wave function is well defined.

If we try to introduce quantization for other metric
we start with problem of good definition of proper time,
separation between space and time variables, artefact sin-
gularities. When we try to quantize metric of the form of
equation (9) we have good definition of time, separation
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between space and time variables, but as we easily can
see we have singularity for r = rs which is not the source
of the field.

This problem is well known from at least 100 years and
was solved by Eddington in 1924 [9]. He had proposed
transformation to the isotropic coordinate using:

r = r1

(
1+ GM

2c2r1

)2

(100)

r1 = r

2
− GM

2c2 +
√

r

4

(
r − 2GM

c2

)
(101)

and metric takes the form:

d s2 =
(1− GM

2c2r1
)2

(1+ GM
2c2r1

)2
c2d t 2 −

(
1+ GM

2c2r1

)4

(d x2 +d y2 +d z2)

(102)

As it can be shown, from this coordinate metric we have
only one singularity in r = 0 which is physical and is
source of the field.

We have to realize that metric which we choose in
section 4.1 was first verification that can be rewritten as
wave equation (see section 3.3.1). Of course it is not always
the case for every metrics that we can take. Still we would
like to have some generic method to quantize metrics that
have easy physical interpretation.

Ansatz 1. We can quantize gravity if the metric fulfill all
the properties:
– time have proper local interpretation
– gi j = 0 for all i 6= j , where i , j = 0, ..,3
– singularities are only point source of the field

For that choose of the metric we can take Hamiltonian
in covaraint form [10]

H = 1

2
gαβpαpβ (103)

and quantize it to the form of

H = 1

2
gαβp̂αp̂β (104)

We choose to take representation of four-momentum in
form of:

p̂α = (Ê , p̂) = (iħ ∂

∂t
,−iħ ∂

∂r
) (105)

This leads us to the commutation rule:

{pµ, pν} = const .δµν

For that we can define equation of the form:

Dpξ

d t
= {H , pξ}+ ∂pξ

∂t
(106)

That equation by definition we can rewrite to more simple
form:

Dpξ

d t
− ∂pξ

∂t
= {H , pξ}

and simplifying we get:

Γ
µ

ξ0pµ+ {H , pξ}pξ = 0 (107)

Which we can write in quantum form as:

Γ
µ

ξ0p̂µΨ+ {H , p̂ξ}p̂ξΨ= 0 (108)

This give us:

Γ
µ

ξ0p̂µΨ+ cp̂ξp̂ξΨ= 0 (109)

For our metric we get two equations:

Γ0
10p̂0Ψ+ cp̂1

2
Ψ = 0

Γ1
00p̂1Ψ+ cp̂0

2
Ψ = 0

which we rewrite in the form of:

Γ0
10g00p̂0Ψ+ cp̂1

2
Ψ = 0

Γ1
00g11p̂1Ψ+ cp̂0

2
Ψ = 0

Here we see that Γ0
10g00 =−Γ1

00g11 and if we add this two
equations we get:

p̂1
2
Ψ+ p̂0

2
Ψ= 0 (110)

This is the plain wave equation. In this picture gravity can
be seen as free wave function of particle with no mass.

In our opinion only external field or interaction be-
tween two massive particle can create in this picture ef-
fective mass of particle that have gravity mass in classical
picture.

This should not surprise us. We consider our field lo-
cally and start quantize it in local neighborhood around
singularity. In this case mass that we consider is in fact
0. In our definition of metric proper choose of mass is
Komar Mass [11] which for vacuum solution of Einstein
equation is always zero if we integrate on volume different
than infinity.

This remark in natural way leads us to interpretation
that our quantization is proper for this choose of metric.
Our solution for quantum equation should be plain wave
function with no mass for local frame.

8



Document draft 0, No. 0 (2013)

5 Conclusions and open issues

In this article we try to shed new light on our under-
standing of gravity. We present that gravity can be seen
as classic-like field that propagate in the vacuum as wave.
This remark leads us to conclusion, that we may try to
quantize that field and introduce effective theory of quan-
tum gravity.

We may also conclude, that it is natural to consider
gravity in (3+1) manifold. This choose give us opportunity
to reintroduce time in quantum mechanic as regular di-
mension. In this way we can find natural interpretation
for quantum equation that we have obtained.

We have also shown that foliation of spacetime is not
unique for classical approach to gravity as field. We can
get the same interpretation for classical field in two dif-
ferent choose of foliations. This problem disappear if we
start to quantize our field. Depending on choose of (3+1)
metric we get different quantum mechanic equation. We
can interpret this as the choose of coordinate system.

In classical quantization we choose coordinate sys-
tem for observer in infinity and for covariant quantization
we choose local observer. We conclude, that we have to
choose properly our metric depending on problem that
we consider.

In section (4.1.2) we consider the case in which energy
of our system is carried by photon. We see from equation
(95) that energy of that photon will not change linear with
its frequency for high energies close to Planck scales. This
might be proposed as a test of our model.

In covariant quantization we remark that in local
frame we see only massless particles traveling with speed
of light. This picture will change if we introduce inter-
action with other particles for example other photon. It
requires further investigation but we can propose test of
our model for high frequency resonator where we can test
interactions between photons that wave functions have
Planck scales and interact between each other.
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