УДК 115

© 2006 г., А.В. Коротков, В.С. Чураков

 

Многомерные концепции пространства

и времени (пространства-времени)

 

Говоря о семимерном пространстве, следует уточнить, почему мы говорим именно о семимерном, а не о n-мерном пространстве, многомерном пространстве. Дело в том, что трехмерное векторное исчисление Гамильтона – Грассмана дает только три закона сохранения, а в физике элементарных частиц выяснились новые законы сохранения барионного числа, лептонного числа, четности, целый ряд законов сохранения. Стало понятно (по крайней мере, в области физики элементарных частиц), что физика должна быть существенно уточнена, расширена до многомерного варианта [1; 3]. Возникает вопрос: какой же размерностью следует обходиться – 4, 5, 6, 8, 129 или 1000001? Вопрос не праздный. Кроме того, даже если будет выяснена размерность физического пространства, что из эксперимента практически невозможно получить, то встанет вопрос о том – какой же математикой пользоваться при описании явлений в этом пространстве данной размерности, не равной трем?

Поэтому следует исходить, прежде всего, из теории чисел. Еще Пифагор отмечал, что все сущее есть число, т.е. физика, теоретическая физика – это теория числа по сути своей, теория трехмерных векторных чисел. Теория поля полностью и целиком построена на трехмерном векторном исчислении. Квантовая механика в том числе. Все разделы теоретической физики пользуются аппаратом трехмерной векторной алгебры трехмерного векторного исчисления. Попытки расширить пространство приводят к анализу, следовательно, самого понятия числа, как такового.

Одномерное векторное число – это пространство на линейке, пространство чисел на линейке. Трехмерное векторное число, трехмерное векторное пространство теперь нам всем хорошо понятно со времен Гамильтона, но не ранее того. Многомерное векторное пространство, определяемое линейной векторной алгеброй, как того требует трехмерное векторное исчисление, может быть получено путем расширения трехмерных векторных пространств, трехмерной векторной алгебры. Таким образом, мы должны в линейном векторном пространстве ввести векторное и скалярное произведения двух векторов. Это, собственно, основная задача теории многомерных чисел – ввести, определить скалярное, первое и второе векторное произведение двух векторов. Подходов к такому определению немного. В общем виде определение этих понятий ничего не дает, кроме путаницы.

Следует исходить из тех принципов, которыми пользовался еще Гамильтон при построении трехмерного векторного исчисления. Он сначала построил путем расширения комплексных чисел алгебру кватернионов, а затем из нее получил скалярное векторное произведение двух векторов в трехмерном векторном пространстве, т.е. в пространстве векторных кватернионов. Если идти по этому пути, то следует расширять, удваивать систему кватернионов до системы октанионов, что сделал Кэли в 1844 году, но дальнейшие преобразования использовать такие же, какие использовал Гамильтон при получении трехмерного векторного числа и четырехмерного кватернионного числа. Если идти по этому пути, то единственно возможной алгеброй, которая получается из алгебры кватернионов, является семимерная векторная алгебра со скалярным, евклидового характера и векторным произведением двух векторов [2].

То есть сразу дается ответ на два вопроса: какой размерности должно быть пространство? А это именно семь, не четыре, не пять, не шесть. И во-вторых, задано скалярное и векторное произведения двух векторов строго. Это позволяет развернуть алгебру, т.е. получить свойства алгебры, вытекающей из этих двух фундаментальных понятий, что и было в свое время осуществлено на практике. Таким образом, мы получаем семимерную евклидову векторную алгебру с семью ортами ортогональной системы координат, возможно ортогональной, в которой строится семимерный вектор. Сразу возникает целый ряд новых, совершенно новых для алгебры понятий, таких как: векторное произведение не только двух векторов, но и трех, четырех, пяти, шести векторов. Это инвариантные величины, дающие в свою очередь определенные законы сохранения. Среди скалярных величин также появляются величины инвариантные, как функции не только двух векторов скалярного произведения двух векторов, но и как функции большего числа векторов. Это смешанные произведения трех векторов, четырех векторов, семи векторов. По крайней мере, эти функции найдены, уточнены их свойства, и эти функции дают инвариантные понятия типа законов сохранения – законов сохранения этих величин. То есть появляется возможность получения совершенно новых законов сохранения величин, физических величин – при использовании вместо трехмерной алгебры семимерной векторной алгебры. Трехмерные законы сохранения энергии, импульса и момента импульса следуют из этой алгебры просто как частный случай. Они имеют место, сохраняются, никуда не исчезают, они фундаментальны, так же как и новые законы сохранения, появляющиеся при рассмотрении семимерных пространств [2].

Говоря о многомерности вообще, следовало бы уточнить: а нельзя ли построить алгебры большей размерности – векторной алгебры большей размерности? Ответ таков – можно! Но свойства этих алгебр совершенно иные, хотя они включают трехмерные семимерные алгебры как частный случай, как подалгебры. Свойства их видоизменяются. Например, известный закон для двойного векторного произведения будет сформулирован совершенно иначе. Это уже будет не алгебра  Мальцева, это будет пятнадцатимерие – совершенно иная алгебра, а для тридцатиодномерия – вообще вопрос не изучался. Что говорить о 15-ти или 31-мерном пространстве, когда концепция семимерного пространства еще не завоевала прочной фундаментальной позиции в умах ученых. Прежде всего, нужно базироваться на анализе семимерного варианта как очередного варианта за трехмерным векторным исчислением. Надо отметить, что в векторной алгебре по своей сути не используют понятие деления, т.е. даже трехмерная алгебра – это алгебра без деления – нельзя вектору сопоставить обратный вектор, либо найти ему противоположный, т.е. найти обратный вектор. И в векторной алгебре отсутствует понятие единицы, как таковой, скалярной единицы, которую можно было бы делить на обратное число, получая вектор. Поэтому это снимает ограничения в плане того, что мы имеем только четыре алгебры с делением – четырехмерная, двухмерная, одномерная, восьмимерная. Расширение дальнейшее было бы просто невозможным. Но поскольку векторные алгебры – алгебры без деления, можно пытаться идти по этому пути дальше, строя многомерные алгебры.

Вторым аспектом является то, что уж поскольку мы работаем с алгебрами без деления, то можно использовать алгебры, которые могут быть получены путем расширения действительных чисел без использования процедуры деления. В двухмерном варианте это двойные и дуальные числа, в четырехмерном варианте – псевдокватернионы и дуальные кватернионы, в восьмимерном варианте – псевдооктанионы и дуальные октанионы. Из них той же процедурой Гамильтона можно получить трехмерные псевдоевклидовы индекса 2 и семимерные псевдоевклидовы индекса 4 векторные алгебры. Опять вопрос стоит о трехмерном и семимерном варианте. Надо отметить, что возможно также дуальное расширение, но дуальное расширение, в свою очередь, характеризуется тем, что оно не имеет изоморфной группы преобразований. Псевдоевклидовы алгебры трехмерные и семимерные, как оказывается, имеют группы, могут быть описаны групповыми свойствами преобразований этих векторных величин. В то же время дуальные величины преобразуются друг в друга с помощью матриц, квадратных матриц вырожденных, т.е. имеют определитель, не равный нулю, эти матрицы. И это резко ограничивает возможности таких алгебр для применения. Тем не менее, они могут быть построены. Но группы преобразований вырождены. Эта концепция приводит, следовательно, к расширению понятия действительного числа одномерной векторной величины, трехмерные векторные величины, дуальноевклидовы, псевдоевклидовы и собственно евклидовы и семимерные векторные величины – собственно евклидовы, дуальноевклидовы, псевдоевклидовы.

Математика таких пространств уже определена [2], и проблем с использованием преобразований и выражений в этих пространственных соотношениях не вызывают никаких затруднений. Единственно, несколько более сложный вариант – семимерие, нежели трехмерие. Но компьютерная техника позволяет без проблем осуществлять эти преобразования. Таким образом, мы фиксируем понятия одномерного, трехмерного и семимерного пространства, собственно евклидового, как основного из этих пространств, псевдоевклидового, как существующая возможность невырожденных преобразований пространственных с соответствующей группой псевдоевклидовых преобразований и дуальноевклидовых. Вот в результате получается набор из девяти векторных алгебр, которые можно рассматривать для физических приложений. По крайней мере, шесть величин собственно евклидовых и псевдоевклидовых, наверное немного неточно, не девять, а семь – и в результате не шесть, а четыре величины, пять величин, пять алгебр будут иметь место для возможных приложений физических. Итак, следует повторить: основа на данный момент, основным пространственным преобразованием пространственной векторной алгебры является семимерная евклидова алгебра [2]. Это основа. Если эту основу изучить, освоить, применить, это будет уже очень немало. И позволит быстро и без проблем освоить основные векторные преобразования векторной алгебры.

Семимерное пространство характеризуется тем, что все пространственные направления совершенно одинаковые, т.е. пространство изотропно по своим свойствам. В то же время мы имеем не только понятия векторов, но и понятия изменения векторов, положения хотя бы векторов в пространстве. Следовательно, нужно оценивать характер изменения этих положений векторов в пространстве – и это уже с необходимостью приводит к применению понятия времени как скалярной величины, по которой можно осуществлять дифференцирования векторных величин. Поэтому более верной концепцией, наверное, будет рассматривать не просто семимерное пространство, а восьмимерное пространство – время. Семь совершенно идентичных пространственных координат плюс временная координата как скалярная компонента. То есть рассматривать восьмимерный радиус-вектор Ctr, где r – семикомпонентная величина, а t – время однокомпонентная скалярная величина. Точно так же это проделано в четырехмерном пространстве-времени Минковского и поэтому не вызывает никаких нареканий и отрицательных соображений и эмоций. Восьмимерное пространство-время связывает так же, как частная теория относительности, время с пространственными соотношениями. Имеет место относительность понятий пространственных величин и временных величин. Имеют место те же преобразования Лоренца, если использовать не YZ, равный нулю, а все шесть остальных компонентов, кроме первой, равными нулю. То есть частная теория относительности четырехмерного пространства-времени Минковского является просто частным случаем преобразования восьмимерного пространства-времени. Вот, собственно, наверное, и все, что следовало бы отметить. Единственное, стоило дополнить или повторить, что в семимерном пространстве имеют место совершенно новые законы сохранения величин, а в восьмимерном пространстве-времени точно так же появляются эти величины, как сохраняющиеся фундаментальные величины и варианты при переходе от одной системы восьмимерного пространства-времени к другой – другой системе отсчета.

Что еще стоило бы отметить? При использовании собственно евклидового семимерного пространства получается восьмимерное пространство- время индекса 1, по сути дела, либо некоторые авторы, наоборот, берут три отрицательные компоненты радиус-вектора, поэтому можно говорить об индексе 3, потому что квадрат скорости, либо квадрат радиуса-вектора определяется суммой квадратов компонентов в собственно евклидовом пространстве. В семимерном пространстве практически эта тенденция сохранена целиком и полностью, если использовать собственно евклидову векторную алгебру. Однако семимерное пространство может быть построено также с применением семимерной псевдоевклидовой векторной алгебры индекса 4, и это говорит о том, что квадрат интервала радиуса-вектора, квадрат радиуса-вектора лучше сказать, квадрат модуля радиуса-вектора может быть не только положительным, но также и нулем и даже отрицательной величиной, квадрат модуля радиус-вектора семимерного псевдоевклидового пространства. Точно так речь может вестись о квадрате любого вектора, в частности вектора скорости. Поэтому понятие скорости псевдоевклидовой семимерной векторной алгебры совершенно иное, нежели в семимерном собственно евклидовом пространстве. И это приводит к серьезнейшим изменениям в физическом плане, если строить физическую теорию на базе таких алгебр. В математическом плане нареканий нет, и алгебра может быть фундаментом для построения многомерной физики и, без проблем, многомерная физика строится. Сложнее восприятие этих величин. То есть скорость – величина, в данном случае скорость света, как фундаментальная величина может иметь место только как понятие скорости распространения электромагнитных волн. На базе восьмимерной псевдоевклидовой алгебры с применением семимерной псевдоевклидовой алгебры, скорость может быть не только положительной величиной, но и отрицательной и нулевой.

Это требует в свою очередь дополнительных рассмотрений таких физических пространств, осознания их наличия в действительном мире и попыткой объяснить теорию полей не только электромагнитных, но других, в частности гравитационных, слабых, сильных. Имеющиеся в настоящий момент векторные многомерные алгебры позволяют сделать более глубокий анализ, нежели наличие только трехмерной векторной алгебры и причем только собственно евклидовой векторной алгебры Гамильтона – Грассмана.

 

Библиографический список

1.     Готт, В.С. Пространство и время микромира / В.С. Готт. – М.: Изд-во «Знание», 1964. – 40 с.

2.     Коротков, А.В. Элементы семимерного векторного исчисления. Алгебра. Геометрия. Теория поля / А.В. Коротков. – Новочеркасск: Набла, 1996. – 244 с.

3.     Румер, Ю.Б. Принципы сохранения и свойства пространства и времени / Ю.Б. Румер // Пространство, время, движение. – М.: Изд-во «Наука», 1971. – С. 107-125.