Site search: 
Youtube channel
VK group
Copyright © 2022 Institute for Time Nature Explorations. All Rights Reserved.
Joomla! is Free Software released under the GNU General Public License.
Заседание семинара 20 апреля 2021 г.
D’Abramo G. Faster-than-light? Signaling with moving electric charges // Российкий междисциплинарный семинар по темпорологии имени А.П. Левича. Заседание семинара 20 апреля 2021 г.
[последнее обновление: 01.05.2021]

Заседание семинара 20 апреля 2021 г. № 739
5.0/5 rating (1 votes)

  • 00:00 ​ Presentation of the speaker
  • 9:00 ​ Report "Faster-than-light? Signaling with moving electric charges"
  • 52:27 ​ Comments
  • 1:35:20 ​ Questions and answers
  • 1:50:17 ​ Discussion
  • 2:08:41 ​ Closing remarks

DAbramo G

Faster-than-light? Signaling with moving electric charges

Dr. Germano D'Abramo, Professor of Physics, This email address is being protected from spambots. You need JavaScript enabled to view it.

Ministero dell'Istruzione, dell'Università e della Ricerca: Roma, Lazio, Italy

For every observer, however distant, the electric field of a uniformly moving charge is always directed away from, or points towards, the instantaneous present position of the charge and not away from, or towards, the retarded position at which the observer sees it (due to the finite speed of light). This fact is a well-established consequence of, among others, the application of the Liénard-Wiechert potentials, and its significance for fundamental physics is probably not fully appreciated. This property has non-negligible consequences for what we take for granted about the relativity of simultaneity and faster-than-light communication. In particular, if we consider two opposite electric charges whose distance shrinks to zero at a constant velocity (shrinking electric dipole), then the cancellation of the total field seems to be instantaneous everywhere in space in every inertial reference frame.

A simple variant of the shrinking electric dipole setup appears to allow a sort of faster-than-light communication of information. Our results provide simple theoretical support to the conclusions of recent experiments on the propagation speed of Coulomb and magnetic fields. It would also be interesting to explore any possible connection between our findings and quantum non-locality.


  1. A.E. Woodruff, Action at a Distance in Nineteenth Century Electrodynamics. Isis, 53-4 439-459 (1962) (Download)
  2. J. Henry, Gravity and "De gravitatione": The Development of Newton's Ideas on Action at a Distance. Studies In History and Philosophy of Science Part A 42-1, 11-27 (2011) 
  3. M. Frisch, Non-Locality in Classical Electrodynamics. Brit. J. Phil. Sci. 53, 1-19 (2002) (Download)
  4. A.M. Eddington, Space, time and gravitation (Cambridge: Cambridge Univ. Press, 1987) p 94 (Download old version (1920))
  5. A. Einstein, B. Podolsky, N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 47, 777 (1935) (Download)
  6. S. Popescu, Nonlocality beyond quantum mechanics. Nature Physics 10, 264-270 (2014)
  7. D.I. Kaiser, Tackling Loopholes in Experimental Tests of Bell's Inequality. Forthcoming in Oxford Handbook of the History of Interpretation of Quantum Physics, ed.~Olival Freire, Jr. (Oxford University Press, 2021) (Download preprint)
  8. A. Einstein, On the electrodynamics of moving bodies. Ann. Phys. 17, 891-921 (1905) 
  9. A. Einstein, On the inertia of energy required by the relativity principle. Ann. Phys. 23, 371-384 (1907)
  10. E.M. Purcell, D.J. Morin. Electricity and Magnetism vol.~3 (Newton, MA: Harvard University, 2013) pp. 247-251 & pp. 259-264. (Download)
  11. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, vol. 2 (Reading, MA: Addison-Wesley, 1964) Chapters 21, 26.1, and 26.2
  12. J.D. Jackson, Classical Electrodynamics, 3rd edn (Hoboken, NJ: Wiley and Sons, 1998) Chapters 11.10 and 14.1 (Download)
  13. G. D'Abramo, On the `rigidity' of the force field of a moving source. The Physics Educator 2(3), 2050011 (2020) Preprint
  14. A. Einstein, Dialog Uber Einwande gegen die Relativitatstheorie. Die Naturwissenschaften} 6, 697-702 (1918) (Download)
  15. G. D'Abramo, On apparent faster-than-light behavior of moving electric fields. Eur. Phys. J. Plus 136, 301 (2021) Free access to the paper through Springer Nature SharedIt
  16. T. Van Flandern, The speed of gravity - What the experiments say. Phys. Lett. A 250, 1-11 (1998)
  17. S. Carlip, Aberration and the speed of gravity. Phys. Lett. A 267, 81-7 (2000)
  18. P.A.M. Dirac, Directions in Physics (New York: Wiley, 1978) pp. 31-3
  19. G. de Sangro, G. Finocchiaro, P. Patteri, M. Piccolo, G. Pizzella, Measuring propagation speed of Coulumb fields. Eur. Phys. J. C 73, 137 (2015)
  20. G. de Sangro, G. Finocchiaro, P. Patteri, M. Piccolo, G. Pizzella, Why the interpretation of "Measuring propagation speed of Coulomb fields" stands. Eur. Phys. J. C 77, 75 (2017)
  21. S.V. Blinov, I.E. Bulyzhenkov, Verification of the rigidity of the Coulomb field in motion. Russ.~Phys.~J. 61(2) (2018)
  22. A.L. Kholmetskii, O.V. Missevitch, R. Smirnov-Rueda, R. Ivanov, A.E. Chubykalo, Experimental test on the applicability of the standard retardation condition to bound magnetic fields. J. Appl. Phys. 101, 023532 (2007) (Download)
  23. A.L. Kholmetskii, O.V. Missevitch, R. Smirnov-Rueda, Measurement of propagation velocity of bound electromagnetic fields in near zone. J. Appl. Phys. 12, 013529 (2007)
  24. G. D'Abramo, Astronomical distances and velocities and special relativity. Ann. Fond. Louis de Broglie 45-1 (2020) (Download)
  25. G. D'Abramo, Probing the Limits: Collected Works on the Second Law of Thermodynamics and Special Relativity. (CreateSpace Independent Publishing Platform, 2017)
  • Скачать презентацию: Download

You have no rights to post comments